

Benchmarking	
 the	
 Apache	
 Accumulo	

Distributed	
 Key–Value	
 Store	

[Version 2.1; 10/6/2014]
Ranjan Sen <sen_ranjan@bah.com>

Andrew Farris <farris_andrew@bah.com>

Peter Guerra <guerra_peter@bah.com>

Benchmarking Apache Accumulo

 ii

Table of Contents

1	
 Abstract	
 5	

1.1	
 Keywords	
 5	

1.2	
 Executive	
 Summary	
 6	

2	
 Introduction	
 7	

2.1	
 Introducing	
 Apache	
 Accumulo	
 7	

3	
 Benchmarking	
 Distributed	
 Table	
 Stores	
 10	

4	
 The	
 Apache Accumulo	
 Continuous	
 Test	
 Suite	
 14	

4.1	
 The	
 Continuous	
 Ingest	
 Test	
 14	

4.2	
 	
 The	
 Continuous	
 Walker	
 Test	
 15	

4.3	
 The	
 Continuous	
 Batch	
 Walker	
 Test	
 16	

4.4	
 Graph	
 Construction	
 and	
 Traversal	
 17	

4.5	
 Cell-­‐Level	
 Security	
 18	

4.6	
 The	
 MapReduce	
 Table	
 Verification	
 Test	
 18	

4.7	
 The	
 Stats	
 Collector	
 19	

5	
 Apache Accumulo	
 Benchmark	
 20	

5.1	
 Test	
 Execution	
 Plan	
 20	

5.2	
 Performance	
 and	
 Scalability	
 20	

5.3	
 Sustained	
 Performance	
 20	

5.4	
 Benchmark	
 Workload	
 21	

5.5	
 Test	
 Environments	
 22	

5.6	
 Configuration	
 Notes	
 22	

6	
 Benchmark	
 Results	
 from	
 the	
 EMC2	
 Analytics	
 Workbench	
 23	

6.1	
 Continuous	
 Test	
 Results	
 23	

6.1.1	
 Performance	
 Tests	
 23	

6.1.2	
 Scalability	
 Tests	
 29	

6.1.3	
 Cell-­‐Level	
 Security	
 Test	
 31	

6.1.4	
 MapReduce	
 Table	
 Verification	
 Tests	
 31	

6.2	
 YCSB	
 Results	
 31	

7	
 Benchmark	
 Results	
 from	
 Amazon	
 EC2	
 33	

7.1	
 Continuous	
 Test	
 Results	
 33	

7.1.1	
 Performance	
 Tests	
 33	

7.1.2	
 Scalability	
 Tests	
 37	

7.1.3	
 Cell-­‐Level	
 Security	
 Test	
 38	

7.1.4	
 MapReduce	
 Table	
 Verification	
 Tests	
 38	

7.2	
 YCSB	
 Results	
 38	

8	
 Conclusion	
 40	

9	
 Acknowledgements	
 41	

10	
 References	
 42	

11	
 APPENDIX	
 A:	
 EMC2/Greenplum	
 Cluster	
 Configuration	
 44	

12	
 APPENDIX	
 B:	
 EMC2/Greenplum	
 Services	
 Configuration	
 46	

12.1	
 Apache	
 Accumulo	
 Parameters	
 46	

Benchmarking Apache Accumulo

 iii

12.2	
 Hadoop	
 parameters	
 46	

12.3	
 ZooKeeper	
 parameters	
 47	

13	
 APPENDIX	
 C:	
 Amazon	
 EC2	
 Cluster	
 Configuration	
 48	

13.1	
 Node	
 Types	
 in	
 Cluster	
 48	

13.2	
 Preparing	
 Amazon	
 Machine	
 Instance	
 for	
 Amazon	
 EC2	
 Instances	
 48	

13.3	
 Configure	
 an	
 Amazon	
 EC2	
 Instance	
 Cluster	
 53	

13.3.1	
 Identifying	
 Accumulo,	
 Hadoop,	
 and	
 ZooKeeper	
 Nodes	
 53	

13.3.2	
 Starting	
 Services	
 55	

13.4	
 Create	
 Instance	
 and	
 Run	
 Accumulo	
 55	

13.5	
 Run	
 Continuous	
 Tests	
 55	

13.5.1	
 Creating	
 Table—Partitioning	
 Table	
 56	

13.5.2	
 Checking	
 Results	
 56	

13.6	
 Helper	
 Scripts	
 and	
 Split	
 Files	
 56	

13.6.1	
 install.sh	
 56	

13.6.2	
 conf-­‐slaves.sh	
 57	

13.6.3	
 setupData.sh	
 58	

13.6.4	
 etchosts.sh	
 58	

13.6.5	
 testhosts.sh	
 58	

13.6.6	
 swappiness-­‐spread.sh	
 58	

13.6.7	
 conf-­‐zk.sh	
 58	

13.6.8	
 copy-­‐parallel.sh	
 59	

13.6.9	
 copy-­‐parallel-­‐duper.sh	
 59	

13.7	
 Amazon	
 EC2	
 Scripts	
 59	

13.7.1	
 get-­‐running-­‐instances-­‐default.sh	
 59	

13.7.2	
 proc-­‐instances-­‐domain.sh	
 59	

13.7.3	
 proc-­‐instances-­‐IP.sh	
 59	

13.7.4	
 start-­‐inst-­‐proc.sh	
 59	

13.7.5	
 stop-­‐inst-­‐proc.sh	
 60	

Benchmarking Apache Accumulo

 iv

Table of Figures
Figure 2-1: Apache Accumulo Row Structure .. 8	

Figure 2-2: Apache Accumulo Tablet Storage Components .. 9	

Figure 2-3: Apache Accumulo Table Structures ... 9	

Figure 4-1: Continuous Ingest Data Generation Process .. 14	

Figure 4-3: The Continuous Batch Walker Test ... 16	

Figure 4-5: Graph View of the Ingest, Walk, and Batch Walk Tests ... 18	

Figure 4-6: MapReduce Table Verification .. 19	

Figure 6-1: Ingest Throughput Profile (1-GB Split Size) ... 25	

Figure 6-2: Ingest Throughput Profile (128-GB Split Size) ... 25	

Figure 6-3: Average Throughputs in Presplit Table Clusters of Increasing Size (AWB) 30	

Figure 7-1: Average Throughputs in Presplit Table Clusters of Increasing Size .. 37	

List of Tables
Table 3-1: The Five Workloads in YCSB .. 12	

Table 6-1: Continuous Ingest into Presplit Tables (AWB) .. 24	

Table 6-2: Sustained Continuous Ingest into Presplit Tables (AWB) ... 24	

Table 6-3: Continuous Ingest into Non-Presplit Tables (AWB) .. 25	

Table 6-4: Continuous Ingest into Non-Presplit Tables, Varying Split Thresholds (AWB) 26	

Table 6-5: Continuous Ingest on Non-Presplit Tables, Varying Initial Table Size (AWB) .. 26	

Table 6-6: Walker and Batch Walker Tests on Presplit Tables (AWB) .. 27	

Table 6-7: Walk and Batch Walker Tests, Varying Cluster Sizes (AWB) .. 28	

Table 6-8: Mixed Workloads on Presplit Tables (AWB) .. 28	

Table 6-9: Mixed Workloads on Non-Presplit Tables (AWB) .. 29	

Table 6-10: Scalability on Non-Presplit Tables (AWB) .. 30	

Table 6-11: Continuous Ingest with Varying Visibilities (AWB) ... 31	

Table 6-12: MapReduce Table Verification (AWB) .. 31	

Table 6-13: YCSB++ Single Thread Workload (AWB) .. 32	

Table 6-14: YCSB++ 50 Thread Workload (AWB) .. 32	

Table 7-1: Continuous Ingest into Presplit Tables (Amazon EC2) .. 34	

Table 7-2: Sustained Continuous Ingest into Presplit Tables (Amazon EC2) ... 34	

Table 7-3: Continuous Ingest into Non-Presplit Tables (Amazon EC2) ... 34	

Table 7-4: Walker and Batch Walker Tests on Presplit Tables (Amazon EC2) .. 35	

Table 7-5: Walker and Batch Walker Tests on Non-Presplit Tables (Amazon EC2) .. 36	

Table 7-6: Mixed Workloads on Presplit Tables (Amazon EC2) .. 36	

Table 7-7: Mixed Workloads on Non-Presplit Tables (Amazon EC2) .. 37	

Table 7-8: Continuous Ingest with Varying Visibilities (Amazon EC2) ... 38	

Table 7-9: YCSB++ Single Thread Workload (Amazon EC2) .. 38	

Table 7-10: YCSB++ 50 Thread Workload (Amazon EC2) .. 39	

Benchmarking Apache Accumulo

 5

1 ABSTRACT
With the rapid growth and diversity of distributed key–value stores, there is a growing interest in
benchmarking and understanding the performance characteristics of these storage systems. In this paper,
we present the results of benchmarking the Apache Accumulo scalable key–value store using a series of
stress tests that execute large-scale graph operations. These tests are readily available with the Accumulo
open source distribution but have not been reported in any earlier benchmark studies. We ran these
benchmark tests on two different target environments: a cluster of physical machines optimized for large-
scale analytics and a cluster of inexpensive virtual machines (VM) executing on a publicly available
compute cloud. As a counterpoint to these benchmarks, we also provide the results of running the Yahoo!
Cloud Service Benchmark (YCSB) in the same environments.

1.1 Keywords
Scalable table stores; Benchmarking; NoSQL; Apache Accumulo

Benchmarking Apache Accumulo

 6

1.2 Executive Summary
Distributed computing has grown in recent years as a result of the increased availability and maturity of
open source tools that put cost-effective parallel computing in the hands of many organizations. Open
source platforms such as Apache Hadoop and Apache HBase allow organizations to deploy sophisticated
parallel computing algorithms by leveraging commodity hardware or cloud infrastructure such as Amazon
Web Services (AWS). These platforms allow organizations to manage data at a scale that was previously
impossible.

As companies and government organizations look to this newer technology, there are few benchmark
studies as to what the upper limits of scale or true linear scalability of these platforms are. There is
anecdotal evidence and some studies but fewer scientific studies that look at the upper limits of the
processing power of these platforms.

Because Accumulo is widely used in U.S. Federal Government systems, we chose to study the scalability
of this platform by performing numerous ingest and query tests to determine how much data can be
processed. This paper describes the methods we used to benchmark Accumulo on two platforms: EMC2
Analytics Workbench (AWB), which shows scalability on bare-metal servers, and Amazon Elastic
Compute Cloud (Amazon EC2) instances to show scalability on virtualized infrastructure.

Our tests included ingest and query tests as well as measures using YCSB++. We took constant
performance measures on Accumulo running on 100, 300, 500, and 1,000 nodes to determine whether the
data processing was truly linear and to determine how much data could be processed using this platform.

During the testing, we observed high ingest rates in Accumulo, reaching a maximum throughput of more
than 150 million records per second for a presplit table on 1,000 nodes of the EMC2 AWB. Average
throughput can also be near 100 million records per second for presplit tables. We also saw improvement
in ingest rates for non-presplit tables after a sufficiently large number of tablets are created and distributed
across the cluster.

In the Walker and Batch Walker tests, we found that latencies were generally in the tens of milliseconds
and microseconds range, respectively, for both presplit and non-presplit tables. In mixed tests, we found
more stable performance for the presplit table, where both Ingest and Walker tests were running at the
same time. For non-presplit tables, the latencies increased as more ingest occurred.

The scalability is almost linear in the case of presplit tables, because more test loads are introduced in
proportion to the size of the test cluster. This is not quite so for a non-presplit tables.

The performance and scalability figures are generally better than most distributed table stores for which
benchmark data is available. The presplit table tests provide the best-case scenario; the non-presplit table
cases provided the worst-case scenario. In practice, we expect performance to lie within these two
extreme cases. Our tests were based on random generation of row references. In a weighted scheme of
row reference, we expect better performance for the non-presplit table.

Although this study is not intended as a bake-off against different technologies, it is expected that the
numbers expressed here prove the viability of Accumulo as a scalable key–value store for large quantities
of data and that the platform is linearly scalable at the petabyte range and possibly beyond.

Benchmarking Apache Accumulo

 7

2 INTRODUCTION
Distributed key–value stores, also known as scalable table stores, provide a lightweight, cost-effective,
scalable, and available alternative to traditional relational databases [1, 2]. Today, scalable table stores
such as BigTable [3], Amazon DynamoDB [4], HBase [5], Apache Cassandra [6], Voldemort [7], and
Accumulo [8] are becoming an essential part of Internet services. These tools are used for high-volume,
data-intensive applications, such as business analytics and scientific data analysis [9, 10]. In some cases,
they are available as a cloud service, such as Amazon SimpleDB [11] and Microsoft Azure SQL Database
[12] as well as application platforms such as Google App Engine [13] and Yahoo! Query Language [14].

Benchmarks have been used in comparing performance of computing resources ranging from hardware
systems such as CPUs, disks, and networks to software systems, including databases and application
servers. Such benchmarks include the general-purpose Transaction Processing Council (TPC)
benchmarks [15], benchmarks for e-commerce systems such as SPECweb [16,17], as well as other
benchmarks for cloud computing [18]. The criteria for a successful benchmark are relevance to an
application domain, portability to allow benchmarking of different systems, scalability to support
benchmarking of larger systems, and simplicity so that results are understandable [19]. The types of
application we consider here are those that provide data-serving services in which a user reads and writes
to a database. Individual benchmarks exist for several scalable table stores, including BigTable [20],
Cassandra [21], and Hypertable [22]. A standard benchmark known as the YCSB [23] and its extension,
known as YCSB++ [24], have been developed to apply a uniform set of tests to multiple scalable table
stores. YCSB has been used in comparing different systems such as Cassandra, HBase, PNUTS [24], and
sharded MySQL [25]. YCSB++ [26] compares the advanced features of HBase and Accumulo, such as
server-side programming and the fine-grained data access control the latter provides.

Many applications in this class use multidimensional indexed data structures, such as graphs [27], to
construct and maintain attribute relationships. The published benchmarks for scalable table stores do not
address operations on multidimensional data structures. The Accumulo open source distribution contains
a set of “continuous” stress tests that can be used as standard benchmarks for addressing applications that
use indexed structured graphs.

This paper presents the use of the Accumulo “continuous” test suite to perform benchmark testing of
Accumulo. It addresses operations on indexed data structures in addition to standard workloads on two
representative large compute cluster environments. We do not compare performance of different table
store products but rather investigate the development of a suitable benchmark that exposes and highlights
the performance characteristics of Accumulo.

In what follows, we highlight the basic architecture and features of Accumulo, a distributed key–value
store based on the system described in Google’s BigTable paper. We identify benchmarks that highlight
its performance characteristics and present results of running the benchmarks on the AWB [28] and on
Amazon EC2 [29]. We then present the results of running the benchmark tests and concluding remarks.

2.1 Introducing Apache Accumulo
Accumulo is based on the Google BigTable design but includes several unique features that distinguish it
from other, existing BigTable implementations. One feature is the Accumulo iterator framework, which
embeds user-programmed functionality into different Log-Structured Merge Tree (LSM-tree) stages [30].
Accumulo also provides cell-level security that enables fine-grained data access control.

An Accumulo cluster runs on a pool of machines and operates over the Apache Hadoop Distributed File
System (HDFS) [31]. Data is manipulated in Accumulo using a client application programming interface
(API) or is used as input or output for Hadoop MapReduce jobs [31]. An Accumulo cluster consists of a
single master server and many tablet servers, write-ahead logger servers, a garbage collector process,
monitoring service, and many clients. The Accumulo master server is responsible for managing and
coordinating tablet server activities, including responding to failures. The master uses Apache ZooKeeper

Benchmarking Apache Accumulo

 8

as a coordination service [34] for managing and distributing tablets across the tablet servers. The master
server handles table creation, alteration, and deletion requests from clients. It coordinates startup, graceful
shutdown, and recovery of changes in write-ahead logs when tablet servers fail.

An Accumulo table is a sparse, multidimensional, sorted map of key–value pairs. The multidimensional
keys, as shown in Figure 2-1, consist of a row ID, column key, and timestamp. Column keys consist of
separate column family, qualifier, and visibility elements. All elements of the key and value are stored as
bytes except for the timestamp, which is stored as a 64-bit integer, equivalent to the Java long type.
Tables are sorted in ascending order by the row ID and column keys and in descending order by the
timestamps. As such, Accumulo tables can be thought of as being indexed by the full key, including row
ID, column family, column qualifier, visibility, and timestamp. Accumulo column families are dynamic
and do not need to be defined at the time of table creation. Column families can be organized into locality
groups to control how data is stored on disk. This allows data that is accessed together to be stored
separately from other data in the same table.

Figure 2-1: Apache Accumulo Row Structure

(The key consists of a row ID, column family, qualifier and visibility, and timestamp.)

Each table is partitioned into tablets, which are distributed to the tablet servers. Each tablet represents a
range of rows from a table and is assigned to a single tablet server. A single row as defined by a row ID is
never split across multiple tablets. When using a table design that employs large rows (e.g. a single row
ID has a large number of columns), a tablet can contain a single row. A tablet server typically manages
many tablets. It receives writes to these tablets from clients, persists writes to a write-ahead log, sorts new
key–value pairs in memory, periodically flushing sorted key–value pairs to new files in HDFS. The tablet
server also responds to read and scan requests from clients, forming a merge-sorted view of all keys and
values from each of the tablet’s files and the sorted in-memory store. A tablet server uses multiple write-
ahead logger servers to write updates to local on-disk storage distributed across multiple physical
machines within the cluster.

When a write operation arrives at a tablet server, it is written into a write-ahead log, and then inserted into
the in-memory store, known as the MemTable. When the MemTable reaches a certain size, the tablet
server writes out the sorted key–value pairs to a file in HDFS, called an RFile.

When a read operation arrives, the tablet server performs a binary search in the MemTable and the in-
memory indexes associated each RFile in HDFS to find the relevant values. If clients are performing a
range scan, many ordered key–value pairs are returned to the client from the MemTable and RFiles via a
merge-sort process.

To manage the number of RFiles per tablet, the tablet server periodically performs minor and major
compactions of the files in a tablet server. Compactions combine one or more RFiles into newer, likely
larger files in HDFS. During compactions, deleted key–value pairs are permanently removed from the
store. The garbage collector process removes any unnecessary files asynchronously. Changes are made
atomically on a per-row basis on the tablet server. The reads are optimized to quickly retrieve the value
associated with a given key and to efficiently return ranges of consecutive keys and their associated
values. Methods to efficiently retrieve several ranges of rows simultaneously are available. Figure 2-2,
taken from S. Patil, et. Al (2011) [26], offers a schematic diagram about the relationship between the
different storage components.

Value&

Key&

Row&ID& Timestamp&
Column&

Family& Qualifier& Visibility&

Benchmarking Apache Accumulo

 9

Figure 2-2: Apache Accumulo Tablet Storage Components

Accumulo provides table features such as locality groups, constraints, bloom filters, and iterators.
Locality groups enable sets of column families to be stored separately on disk to allow clients to scan
over columns that are frequently used together efficiently. Constraints are policies applied on mutations
at data insert time. When the bloom filter is enabled, Accumulo uses a memory-based data structure to
determine whether a file contains a given key before opening the file. Iterators provide a modular
mechanism for adding functionality to be executed by tablet servers when scanning or compacting data.
This allows users to efficiently summarize, filter, and aggregate data. Versioning iterators use the
timestamps within a key and can combine several keys based on their timestamp values. Filtering iterators
return only key–value pairs that satisfy the filter logic. Aggregating iterators are applied across the values
associated with any keys that share row ID, column family, and column qualifier. This is similar to the
Reduce step in MapReduce, which applies some function to all the values with a particular key.

Indices are used to support lookups via more than one attribute of an entity. Consider a main table whose
rows are key–value pairs that represent these entities. To build an index to the rows based on their values,
it is possible to construct an index table with the value as the row ID and the columns as the row IDs of
the main table, as shown in Figure 2-3. Accumulo tables can support any number of columns without
specifying them beforehand [32]. Lookups are done by scanning the index table first for occurrences of
the desired values in the columns specified.

Figure 2-3: Apache Accumulo Table Structures

Accumulo is well suited to storing entities and their attributes, especially if the attributes are sparse. It is
often useful to join several datasets together on common attributes within the same table, which allows
for the representation of graphs with nodes and their attributes and connections to other nodes. Iterators
can be configured to add the value of all mutations applied with the same key (designating a pair of
nodes). Similarly, document-partitioned indexing to look for records that match a set of given criteria can
be achieved. Accumulo supports shared indexing, where the matches of multiple search terms are

Queries'

'
 '

'
 '

' '

ingest'
In,memory'

Map'
(memtable)'

Write,Ahead''
Log''

Iterator'
tree'

Sorted'
indexed'
file''

Sorted'
indexed'
file''

Sorted'
indexed'
file''

Iterator'
tree'

Iterator'
tree'

Minor'compac@on'
scope'

Merging/Major''
compac@on'

scope'

Query'
scope'

Value&

Key&

Row&ID& Timestamp&
Column&

Family& Qualifier& Visibility&

Value& Field&Name& Main&table&
row&ID&

Main&Table&

Index&Table&

Benchmarking Apache Accumulo

 10

performed at the tablet servers, thus avoiding costly network traffic. Analytics applications can be
developed using MapReduce and iterators in conjunction with Accumulo tables [32].

Accumulo tables can be used as the source and destination of MapReduce jobs. Aggregating iterators may
be used as replacement for the Reduce phase of MapReduce jobs when it is not necessary to process
entire datasets. In this scenario, each tablet server hosts one or more parts of a table as tablets while
multiple instances of an iterator are run in parallel across many tablet servers. In this configuration one
cannot necessarily know when all values from a range have been observed. This disallows calculating
functions such as the average of values of all the rows visited by the scan within the iterator itself.
However, many applications can benefit from this feature. Using Accumulo iterators in this way enables
efficient and fast lookups and updates of distinct ranges of information using random access patterns, in a
manner complementary to the purely sequential access model of MapReduce.

To increase throughput when reading frequently accessed entries, Accumulo employs a block cache. The
block cache can be configured on a per-table basis, and all tablets hosted on a single tablet server share a
single resource pool. The block cache may have a significant effect on alleviating hot spots as well as
reducing query latency.

High-speed ingest into tables is achieved by presplitting a table into multiple tablets and adding data to
these tablets in parallel. This avoids a delay in parallelism that results in waiting for tablets to split when
they reach the per-tablet size limit. The split threshold is controlled by the table configuration parameter
table.split.threshold [32].

A presplit table is a table that has already been split into tablets, each of which stores a distinct sorted
range of the rows distributed in the cluster. If we store 𝑋 rows in the table, we can create 𝑋/𝑝 tablets,
where the 𝑖-th tablet, 0 ≤ 𝑖 ≤ !

!
− 1, will have row range of 𝑖𝑝 + 1, 𝑖𝑝 + 2 … (𝑖 + 1 𝑝}. The rows of the

table have row IDs {1, 2…𝑋}. If there are N nodes in the cluster then, for an even distribution of tablets,
each node will host on average 𝑝/𝑁 tablets.

Accumulo is capable of scaling to high rates of ingest. In many applications, scalability depends on both
the number of tablet servers and the number of ingest clients sending data into the system. It is often the
case that a single ingest client is unable to sustain a rate of ingest that fully uses server capacity. In
operational settings where high rates of ingest are paramount, clusters are often configured to dedicate
some number of machines solely to running ingest clients.

Accumulo implements a security mechanism known as cell-level security. Every key–value pair has its
own security label, stored under the column visibility element of the key, that is used to determine
whether a given user meets the security requirements to read the value. This enables data of various
security levels to be stored within the same row and users of varying degrees of access to query the same
table while preserving confidentiality. Production systems can integrate with public key infrastructure and
designate client code in the query layer to negotiate to authenticate users and retrieve authorization
tokens. This requires users to specify only the information necessary to authenticate them to the system.

3 BENCHMARKING DISTRIBUTED TABLE STORES
Benchmarks need to be relevant to the application domain where the table store technology is used. They
should be scalable to allow benchmarking larger systems; portable so that they can be used for different
products; and simple, easy to run, and repeat.

The performance evaluation of BigTable [20] addressed two criteria: performance and scale. The
operations of interest were sequential and random reads and writes on tables of known sizes. The
workload was controlled to be 1 GB of data per tablet server. In sequential read or writes, row keys from
a sorted range were used. In random reads and writes, the rows used were generated randomly. Multiple
clients were used in load generation. In the Scaling test, the number of tablet servers was increased along
with a proportional increase in load. Based on this work, a benchmark was developed for Hypertable that

Benchmarking Apache Accumulo

 11

used Zipfian distribution to generate workloads of random inserts and sequential scans [22]. Netflix
developed the write-oriented benchmark stress tool for Cassandra in Amazon EC2 instances (M1 Extra
Large—4 CPU, 15 GB of RAM, and 4x400 GB disk), where the writes to disk were performed but the
reads were limited to memory [29]. Their test also included scalability tracking and was run across three
availability zones in the Amazon cloud for 96 instances in each. With 60 client instances, this test
generated 1.1 million writes per second and was complete in 2 hours, creating a 7.2 GB table of records.

The YCSB is a standard data-serving benchmark focusing on portability and extensibility. The benchmark
provides a number of adapters that allow it to be run against a variety of different database systems.
YCSB provides two tiers of benchmarks: performance and scalability. The performance tier focuses on
the latency of requests when the database is under load. There is an inherent tradeoff between latency and
throughput: As load increases, latency increases due to contention for hardware resources such as disk,
CPU, and network. Application designers must choose system configurations that provide an acceptable
balance of latency and throughput for their application. To understand this relationship, the benchmark
measures query response time (latency) in relation ingest rate (throughput) while increasing the amount of
data ingested to induce system load. To measure scaling, latency is measured while increasing the number
of machines in the system in addition to proportionally increasing dataset size and throughput. In scalable
system, latency should remain constant despite the increase in dataset size, throughput and number of
machines. The results of using YCSB in a small cluster for four widely used systems—Cassandra, HBase,
PNUTS, and a simple shared MySQL implementation—are available [23].

The YCSB benchmark consists of a workload generator and a workload configurator. The workload
generator includes a base core workload class that activates operations, which can be customized via the
workload configurators to carry out insert, update, or read operations using different statistical
distributions on target databases. The benchmarks can be run with different database configuration
parameters and the results of throughput and latency obtained. The core workload class can be extended
to control the environment and activate operations that expose additional performance characteristics.

The workloads in the core package are applied to the same basic application type. In this application,
there is a table of records, each with a variable number of fields. Each record is identified with a string-
type primary key. The values of fields are a random string of ASCII characters of known length. Each
operation against the data store is randomly chosen to insert a record, to update a record by replacing the
value of one field, to read a randomly chosen field or all fields of a record, or to scan records starting at a
randomly chosen record key. The number of records to scan is randomly chosen. The distribution of scan
lengths is chosen as part of the workload. So, the scan method takes an initial key and the number of
records to scan.

The workload client randomly decides which operation to perform (insert, update, read, or scan), which
record to read or write, how many records to scan, and so on; random distributions govern these
decisions. The distributions can be uniform, Zipfian, latest, or multinomial. In a uniform distribution, an
item is chosen uniformly at random, with each choice being equally likely. In Zipfian distribution, some
records are more likely to be chosen than others. For example, in the case of an insert operation, a
uniform distribution models a scenario in which the actual insertion of a record does not change its
probability of choice for insertion. In the case of Zipfian distribution, a record may have a measure of
popularity, where high popularity makes its more probable to be inserted than lower-popularity options.
The latest distribution is similar to the Zipfian, except that the more likely records are the most recently
inserted ones. In the multinomial distribution, the probabilities of choice for each item can be specified.
For example, we may assign a probability of 0.95 to the read operation and a probability of 0 to scan or
insert. The distribution is assigned to two main choices: which operation to perform and which record to
read and write. The core workload package consists of five combinations based on the ratio of these
operations and distribution for selection of records. These workloads model different application
scenarios and are presented in Table 3-1.

Benchmarking Apache Accumulo

 12

Workload Workload
Characteristics

Application Scenario Performance
Evaluation

Workload A
(update
heavy)

50% read, 50%
update, with Zipfian
distribution of
operations

Session store recording recent
actions in a user session (read
and update).

Latency vs. throughput
for both read and
update operations

Workload B
(read
heavy)

95% read, 5%
update, with Zipfian
distribution

Photo tagging, where adding a
tag is an update operation;
most operations are to read
tags

Read and update
latencies vs.
throughputs (same as
above but read heavy)

Workload C
(read only)

100% read, with
Zipfian distribution

User profile cache, where
profiles are constructed
elsewhere

Results similar to
those of workload B

Workload D
(read
latest):

95% read, 5% insert
with distribution,
where the latest
transaction repeats
more

User status updates (people
want to read the latest status)

Similar result as
workload B

Workload E
(short
ranges):

95% scan, 5%
insert, with Zipfian
distribution

Reads the first record in
scan/uniform to determine the
number of records to scan,
corresponding with applications
of threaded conversation; each
scan is for the posts in a given
thread

Was run for HBase,
Cassandra, and
PNUTS, with ranges up
to 100 records

Table 3-1: The Five Workloads in YCSB

Scalability tests were configured and run on clusters that had different number of servers, varying the size
of workload proportionally. Six server-class computers and multiple multicore computers to run up to 500
threads of the YCSB client program. The database used consisted of 120 million 1-KB records for a total
size of 120 GB of data. Read operations retrieved an entire record; update operations modified one of the
fields.

The YCSB++ is an extension of YCSB that provides multiclient-generated workloads, coordinated by
ZooKeeper server to follow interaction patterns and experimental strategies to investigate advanced
features of table stores [26]. This helps emulate usage scenarios of multiple coordinated operations and
provide realistic workloads on the tables. Some of these scenarios include multiple phases of table
operations by different clients. The five advanced features examined were weak consistency, bulk
insertions, table presplitting, server-side filtering, and fine-grained access control. The tests were run for
HBase and Accumulo and exposed functional and performance characteristics not exposed in a systematic
way before.

The weak consistency test measures the time lag from one client completing an insert until a different
client can successfully observe the value. Table presplitting helps reduce ingest time. To add presplitting,
it uses a new workload property. Server-side filtering offloads compute cycles from the client to the
server and is expected to reduce network overhead. Four different server-side filters have been defined.
For fine-grained security, it supports tests that specify credentials for each operation and access control
list (ACL) to be attached to schemas or cells.

The performance of server-side programming and the cost of cell-level access control in Accumulo were
tested [26]. Worst-case performance estimation was obtained by using a unique ACL for each key and a

Benchmarking Apache Accumulo

 13

larger size for the ACL. Large ACLs were generated in the iterators on the server side, so network
overhead between the client and tserver related to the size of the ACL was factored out of measurements.
Two workloads were used: an insert workload of 48 million single-cell row inserts into an empty table
and a scan workload of 320 million rows scans. One client that had 100 threads and six clients that had 16
threads were used for a six-node cluster. When the client with 100 threads was used, insert throughput
decreased while increasing the number of entries in each ACL. When using only six 16-thread clients, the
throughput decrease was much less significant compared to using no ACLs, even with a large number of
entries for the ACLs.

Multiphase experiments involving multiple clients and table presplitting to avoid online splitting
overhead during continuous ingest were conducted. Six million rows of an Accumulo table were split into
various numbers of partitions, and completion times were found. At a certain split size in this experiment,
Accumulo carried out no further splitting automatically during ingest.

Similar experiments were conducted for bulk insertion using Hadoop and MapReduce, where iterative
ingest was replaced by a MapReduce job generated files in the native format used by the table store
followed by bulk import of these files into a table. This experiment measures how the policies of
managing splits and compaction affect high-speed ingest [26].

The advent of YCSB and YCSB++ has provided a standard, systematic viewpoint to benchmarking
scalable table stores. YCSB provides a base benchmarking platform with an extensible framework.
YCSB++ demonstrates the use of YCSB to benchmark advanced features. YCSB++ has developed the
adapters for Accumulo, which were not provided in YCSB, and also created a client-coordination
framework. It provides benchmarks for testing advanced features of HBase and Accumulo. Both tools
have used a relatively small cluster of six nodes in their demonstration test

Benchmarking Apache Accumulo

 14

4 THE APACHE ACCUMULO CONTINUOUS TEST SUITE
The Apache Accumulo Continuous Test Suite is used to stress-test the Accumulo table store and its
support system. Multiple clients can run the tests in the suite continuously to produce high volumes of
writes, reads, scans, and batch scan operations. The test suite includes the ability to perform offline scans,
failure recovery scenarios via dynamic simulation of master and tablet server failures, and high-speed
parallel table verification using Hadoop MapReduce.

Overall, the continuous test suite provides basic ingest, query, and search workloads that involve multiple
index-forwarding operations on a graph. The primary test included in the suite is the Continuous Ingest
test that builds a set of linked lists. These linked lists contain elements that are Accumulo table rows with
random row IDs. Each row is a key–value pair, where the value is a link or reference to a row ID in the
same table. The Continuous Ingest test generates random row IDs and in the process creates a random
graph index structure. Other tests, such as the continuous walker and the continuous batch walker,
traverse the graph sequentially and in parallel. The tools in the suite can also verify failure recovery as
servers are randomly stopped and restarted and provides MapReduce code for data verification.

4.1 The Continuous Ingest Test
The Continuous Ingest test creates a table and adds rows with random row IDs to build a large graph data
structure. Each row of the table represents a graph vertex. Each row’s value references another row and
represents an edge of the graph. The test uses a three-stage iterative method to build a long linked list
containing elements connected in this way.

In the first step, a fixed number (𝑛!) of rows {𝑥!, 𝑥!, … 𝑥!!} is created, with keys (row IDs and columns)
generated randomly. The value of these nodes is initially set to null.

In the iteration step, for each row (𝑥!,) where, 1 ≤ 𝑖 ≤ 𝑛!, a fixed number (𝑛!) of new rows, {𝑦!!, 𝑦!!, …
𝑦!!!}, is created with randomly generated keys. Each row (𝑦!"), 1 ≤ 𝑗 ≤ 𝑛!, is given a value such that
𝑦!! links to 𝑥!, 𝑦!! links to 𝑦!!, …. and, 𝑦!!! links to 𝑦!!!!!.

In the last step, additional 𝑛!-1 links from each of 𝑥!!! to 𝑦!!! are added.

These steps can be repeated continuously and over time. A given row may accumulate multiple columns,
each referencing other rows. The schematic view of the data structure developed is shown in Figure 4-1,
where each box represents a row ID or a vertex in the graph and an arrow corresponds to a link in a row
ID, called previous row, or a directed edge of the graph. At the end, 𝑥!has a value of null and is called the
header node of the list.

Figure 4-1: Continuous Ingest Data Generation Process

x1# x2# xn1#

y11# y21#

y1n2#

y1n2# yn1n2#

flushInterval#=#n1#

De
pt
h#
=#
n2

#

x3#
Step#1#

…………..#y21#

y2n2#

y2n2#

y21#yn11#

yn1n2#

y3n2#

Xn1:1#

Step#2#

Step#3#

…..#

…………..#

Benchmarking Apache Accumulo

 15

The variable 𝑥! corresponds to the row ID of the table rows and is generated randomly from a given
range. The test also creates a column family and column qualifier randomly from a range of numbers.
Note that the random generation of row IDs results in random references to rows in general, resulting in
the formation of a randomly structured graph.

The size of the table created and the graph density are determined by the number of ingest clients used in
the test, the range of random values assigned to the row ID, and the column values. The values of 𝑛! and
𝑛! are given by the test parameters flush interval and depth, respectively, the default values of which are
1,000,000 and 25, respectively. The total number of steps is calculated as 𝑛!𝑛! + 𝑛! − 1. It is repeated
until a given test parameter value is reached. After each iteration step is complete, the rows are flushed to
the tablet server persistent storage device. Other system parameters can be used to modify the behavior of
the Continuous Ingest test. These add the ability to control the batch size of the buffer that the test uses,
the maximum latency or hold time before memory data is written to the tablet server, and the maximum
number of ingest threads to use for each ingest process.

An example of two rows generated by the Continuous Ingest test is shown below. The first 16 digits
correspond to the row ID. The column family and column qualifier follow, separated by a colon (:). Next,
an empty visibility is contained within the pair of brackets ([]). The row timestamp is not shown. After
the brackets, the value field appears, which is split into four parts separated by colons. The third part is a
row ID that references another row in the table. In the example shown, the row with an ID of
0020efc13153756f is pointing to the row 11af847f1e67c681. The row with row ID 11af847f1e67c681 has
an empty value for its link to the previous row, which means that it is a header node in the linked list.
11af847f1e67c681 19a2:6a28 [] 277cbce9-26ae-467e-a553
1684bf29db02:0000000000119492:7cd8a9ec
……
0020efc13153756f 19a2:6a28 [] 277cbce9-26ae-467e-a553
1684bf29db02:0000000000119492:11af847f1e98c681:7cd8a9ec

The value field is the concatenation of a universally unique identifier for the test, the number of rows
created so far (in this case, 119,492), and the row ID of the previous row. This provides the link to the
previous row, which is an edge of the graph being created. The final part of the value is the checksum for
the entry. The size of the value field is 54 bytes for a non-null valued link and no checksum field.

4.2 The Continuous Walker Test

The Continuous Walker test traverses the graph that the Continuous Ingest test created. This process has
two phases: scan and walk. In the scan phase, the test selects a starting row (or graph vertex) and collects
all of the rows that that row references by using an Accumulo Scanner. In the walk phase, it randomly
selects one of the saved rows and uses it as the starting row for the next iteration of the scan. In this way,
a walk is a move from the randomly selected current row of the table to the row that the value field

head%Buffer:%Set%of%rows%to%follow%

(1#a)&Walk&phase&&
Generate%random%%
start%row%

Table%

(2)&Scan&phase:&
Scan%all%rows%from%start%row%
Extract%previous%row%from%each%
Save%in%buffer%for%selec=on%

(1#b)&Walk&phase:&
Select%new%start%row%and%repeat%
If%no%rows%to%select%perform%(1Aa)%

Figure 4-2: The Continuous Walker Test

Benchmarking Apache Accumulo

 16

references. In subsequent scan phases, additional row references are added to the set collected in earlier
scan executions. This process is repeated until all of the saved value fields are processed. This process is
shown in Error! Reference source not found..

Each new iteration cycle starts after all of the elements in the set of values have been picked. The time
delay between the cycles and iteration can be modified to control the speed of the walk. These time delays
are used to represent simulated computational load for analytics processing associated with the graph
traversal steps. This iterative process results in a walk of the graph, beginning with randomly choosing a
graph vertex and walking to other random vertices connected by edges.

4.3 The Continuous Batch Walker Test
The Batch Walker test is a parallel version of the Walker test. It employs the same scan and walk
technique that the Walker test uses, but in this test, the walk phase is a set of parallel walks. This test uses
the Accumulo BatchScanner interface [32] to perform parallel walks in multiple ranges of the rows in the
table. An Accumulo BatchScanner instance is created to access the table. At that time, it is initialized,
with the number of threads to use for parallel batch scanning. First, a set of row IDs is selected randomly.
An array of Accumulo Range instances is then created using the Accumulo Ranges API, starting at each
row ID in the set. The setRanges method is used to initialize the BatchScanner instance with the array of
Ranges. The different threads of the BatchScanner use different Range instances from this array for
scanning. This process is repeated until the row reference from the value of the current row being walked
points to a row with a null value. Then, the test is repeated, with the creation of a new set of batches and
ranges.

Figure 4-3: The Continuous Batch Walker Test

Similar to the Continuous Walker, the Batch Walker test uses sleep times to create temporal order among
operations. The batch size and query thread parameters are configured when invoking the test. The set or
row IDs used to create the array of Ranges is limited to three times the batch size value. The query-
threads parameter is used when creating the BatchScanner for the table. The default batch size and query
threads are 10,000 bytes and 16 bytes, respectively.

Find%a%start%node%

%%%Nodes%selected%<%3*%batchSize%

Scan%from%it%using%Scanner%

Walk%and%get%next%node%%
(previous%row)%in%linked%list%%

Ranges%starCng%from%each%

Batch%Scan%from%each%node%using%BatchScanner%and%range%from%each%

Walk%and%get%next%node%%
(previous%row)%in%linked%list%

Benchmarking Apache Accumulo

 17

The variable ‘count’ maintains the number of elements in the set (rowsToSelect) from which the
starting row is selected. It uses another set (rowsSeen) to track which rows have been seen so far.

Figure 4-3 is a schematic diagram showing the process. Each walk runs in parallel with others running on
multiple threads.

4.4 Graph Construction and Traversal
The Continuous Ingest test builds a random index structure, which in general is representative of a
collection of graphs. A row ID in the table corresponds to a vertex in the graph data structure. The row ID
is randomly generated from the range 0 to maximum Java long value. The column family and qualifier are
also randomly generated from the range 0 to maximum Java int value. One can configure these ranges to
generate graphs of different densities and characteristics. A key–value pair represents a graph edge from
the vertex corresponding to the row ID to the vertex corresponding to the row ID that the value field
references. The column qualifier is the label of the edge.

Figure 4-4 shows the Ingest, Walker, and Batch Walker tests as graph operations. Each vertex represent a
table row, and an arrow represents a write in the Ingest test and a read or query in the Walker and Batch
Walker tests, respectively.

Find%a%start%node%

%%%Nodes%selected%<%3*%batchSize%

Scan%from%it%using%Scanner%

Walk%and%get%next%node%%
(previous%row)%in%linked%list%%

Ranges%starCng%from%each%

Batch%Scan%from%each%node%using%BatchScanner%and%range%from%each%

Walk%and%get%next%node%%
(previous%row)%in%linked%list%

Benchmarking Apache Accumulo

 18

Figure 4-4: Graph View of the Ingest, Walk, and Batch Walk Tests

In the case of the batch walk, multiple arrows are traversed at the same time on multiple query threads.
Note that the walk selects a starting vertex randomly and stops a walk when it reaches a vertex that has no
outgoing arrow.

The Continuous Ingest and Walker tests can serve as benchmarks for graph construction and traversal-
based applications. In the current version of the test, only random row ID, column family, and qualifiers
are generated. These can be extended to weighted value generation, which may be more representative of
a specific application domain. In our study, we have used the current version of the test.

4.5 Cell-Level Security
The test for estimating operation overhead for checking cell-level authorization (ACL) is implemented as
an option available in Ingest and Walker tests. The overhead simulated in the test is based on the random
selection of different authorization properties. The visibilities, authorizations, and authorization symbols
are defined in separate files and flags provided as test configuration parameters. The visibilities are
randomly chosen during record storage in an ingest operation and verified in a walk operation. The
visibilities are given as arbitrary symbols in individual lines of the visibility file that represents authorized
operator.

4.6 The MapReduce Table Verification Test
The Verification test is a MapReduce job that checks the integrity of the table that the Continuous Ingest
test creates. It verifies that all referenced nodes are defined to ensure that no data was lost during the
course of the Ingest test. For each row of the table, it outputs key–value pairs for the reduce method to
process. In this the key is the row ID of the previous row, obtained from the value field of the current row
and the value is the row itself. The previous row is the end vertex of the edge from the vertex
corresponding to the row. The reduce method gets the list of all rows that has the same previous row. In
graph terms, this is the list of all vertices that has the same end vertex, as shown schematically in Figure
4-5.

(a)  Ingest* (b)*Walk* (c)*Batch*Walk*

No*previous*row*
Star;ng*vertex* Star;ng*vertex*

In*a)*arrow*represents*a*write.*In*b)*and*c)*arrow*represents*one*read*opera;on.*A*walk*
is*a*sequence*of*read*that*stops*at*a*vertex*with*no*outgoing*edge.*A*batch*walk*is*a*
concurrent*set*of*reads.***

Benchmarking Apache Accumulo

 19

Figure 4-5: MapReduce Table Verification

The MapReduce job input class is the AccumuloInputFormat class from the Accumulo client library. A
set of row ranges, based on the number of mappers to be used, is obtained and assigned to the
AccumuloInputFormat using the setRanges method of this class [32]. The mapper input key and value are
the Accumulo Key and Value types. The mapper output classes for the key and value are the
LongWritable and the VLongWritable classes of the Hadoop library [31].

The map method gets the row ID from the key. It then calls the validate method with the key, and the
corresponding value reads and reports checksum errors. The row value field is then used to obtain the
previous row, outputting it as a key, while the row itself is outputted as the value of the mapper output
stream, as illustrated by the arrows in Figure 8.

The reducer reads the key values from the mapper output as a key–value pair: vref, (collection of vrows).
The vref is a row ID reference, and the value associated with it is the collection containing all vrows that
corresponds with the row IDs and has the row ID referenced by vref as the previous row or end vertex.
The reduce method reads the values in the collection, checks whether the value is legitimate (a row is
undefined if it has a inappropriate content in the value field), and counts them. If the collection is not
empty, then all these elements are added to a string and outputted as a value for the reduce key. The
output of the reduce method identifies the rows that are undefined, unreferenced, or are proper and
referenced.

4.7 The Stats Collector
The stats collector gathers data on Accumulo metrics that include resource usage, file system, and
MapReduce and table statistics. These metrics are gathered every 30 seconds and written to a log
throughout the lifetime of the tests.

The getACUStats method returns the number of tablet servers, the total table entries (all), the ingest rate
(all), the query rate (all), records in table (test), records in table in memory (test), the ingest rate (test), the
query rate (test), tablets used (test), and tablets online (test). The “all” and “test” in parentheses are all
tables and the test table, respectively. The getFSStats method collects information about the Hadoop file
system usage associated with the Accumulo instance and the table being tested. It returns the size of the
accumulo directory in HDFS that corresponds with an Accumulo instance, its directory count, the number
of files, the test table directory length, and file counts. The getMRStats method returns the number of map
tasks, max map tasks, reduce tasks, max reduce tasks, number of task trackers, and the count of
blacklisted task trackers. The getTabletStats method returns the minimum, maximum, average, and
standard deviation from the metadata table. All these values are printed in the statistics log file

key$ key$ key$value$ value$ value$

vref$ vrow$ vref$ vrow$vref$ vrow$

vref$ vrow$

.$.$.$.$.$.$$

vrow$ vrow$vrow$

The$input$to$reduce$istherows$that$all$
hasthesame$previous$row$

map$

reduce$

Benchmarking Apache Accumulo

 20

5 APACHE ACCUMULO BENCHMARK
We aim to highlight the following aspects of performance in the benchmark tests:

• Throughput and latency
• Scalability
• Sustained performance.

Sustained performance is an important factor often needed in applications that continuously process
online data in semi–real-time mode. We wanted workloads that represent operations on multi-indexed
data structure or graphs.

5.1 Test Execution Plan
The Accumulo continuous test suite uses a multi-indexed data structure as the test table data. The
Continuous Ingest, Walker, and Batch Walker tests perform long-term ingest or write operations as well
as traversal or walk of the indexed data structure records in random, sequential, and multithreaded batch
operations. These tests measure the throughput and latency aspects. The scalability issue can also be
examined by running these tests in clusters of different numbers of tablet servers. These tests are designed
to run continuously over a long period of time and are suited to testing sustained performance. In view of
these factors, we used the Accumulo continuous test suit in our benchmark tests. We also used two
different target cluster environments: a high-performance analytics workbench environment and a
commodity cloud.

5.2 Performance and Scalability
We observed ingest and query rates for both configurations to understand the relationship between write
load and read latency. We hosted Ingest as well as Walker test clients on the same host. In addition, we
run ingest and walker clients independently, as in the Ingest Only and Walk/Batch Walk Only tests to
observe maximum and average ingest rates and query rates.

The performance measures in YCSB are given by read latency for different levels of update and write
loads on the table store under test. In our benchmark we simulate this scenario via the Partial Ingest Full
Walk/Batch Walk configuration (see Section 5.3). The Full denotes involving N test clients, where N is
the number of tablet servers, while the Partial limits this to around N/3.

To measure scalability, we track the change average ingest and query rates as we increase the number of
computers and the ingest and query load increases proportionately. In a good, scalable system, both ingest
and query rates remain constant.

5.3 Sustained Performance
We wanted to examine the long-running behavior of Accumulo. In this context, we examined the role of
the table split threshold of the Accumulo table. This parameter (by default, 1 GB) is the combined size of
the files in a tablet that triggers a tablet to be split. A low split value is good, as parallelism in table
operation increases as more tablets are created and distributed in a balanced manner across the tablet
servers. However, in the case of a long-term test scenario, with the increasing size of the table, the file
compaction overhead increases with a low split threshold value. This becomes a major bottleneck in
maintaining a sustained level of table operations.

We have examined the role of table split threshold in maintaining parallelism in the Ingest Only test. We
start with the default threshold. After a moderate number of tablets have been generated and evenly
distributed across the cluster, we stopped the test and increased the configured value of the split threshold
of the test table to a high value, and then restarted the Ingest Only test.

Benchmarking Apache Accumulo

 21

5.4 Benchmark Workload
Each test generates a basic workload. The Continuous Ingest test, described earlier, generates random row
IDs and values that link to previously generated rows. It starts with a set of randomly generated
flushInterval row IDs and builds linked lists of length maxDepth that iteratively link back to the
previously generated set. The flushInterval and maxDepth are defined in Section 4.0. We have used
1,000,000 and 25 for these two parameters, respectively. The column family and column qualifiers are
randomly generated. The row ID is 16 bytes; the column family and column qualifier are 8 bytes in size.
The value field is 54 bytes, with no checksum and a non-null previous link.

The Walker test randomly selects a first row to read using a scanner and continuously scans a randomly
chosen previous row to which it links. It repeats this operation after a certain wait time. The Batch Walker
test uses a BatchScanner with a given number of threads to perform a parallel scan, repeating with a
certain wait time. The wait time, number of threads to use, and a batch size giving a bound on the number
of queries to perform are provided as external parameters. The value used for wait time for the Walker is
10 milliseconds. The values for wait time, number of threads, and batch size used for the Batch Walker
are 180 seconds, 16, and 10,000, respectively. These are the default values defined in continuous-env.sh,
which resides in the continuous test directory in the Accumulo distribution.

We conducted the tests in clusters of sizes ranging from 10 to 1000 nodes in two test environments: a
cluster of physical machines connected via a high-speed network a commodity cluster composed based on
VMs. We ran the tests individually as well as in combinations. The individual tests include Ingest Only,
Walk Only, and Batch Walk Only. The combination tests are Full-Ingest-Full-Walk, Full-Ingest-Full-
Batch Walk, Partial-Ingest-Full-Walk, and Partial-Ingest-Full-Batch Walk. In the Partial-Ingest-Full-
Walk/Batch Walk and the Full-Ingest-Full-Walk/Batch Walk tests, we simultaneously used Ingest and
Walker tests. In the Partial-Ingest-Full-Walk test, we limited ingest to a fraction of N Ingest test clients
and N Walker test clients. In the Full-Ingest-Full-Walk, we used all N ingest and walker clients to ensure
that proportionate load is offered as the cluster size changes.

To create sufficient ingest and query load, multiple concurrent test clients were employed. Each client
was configured with a large send buffer and high number of threads. The clients ran on the same
computers as the Accumulo tablet servers. In general, for an N server Accumulo configuration, we had N
clients performing the test operations, but in some test configurations, multiple test clients were run per
tablet server. By default, each client used a 100,000,000-byte buffer and 4 threads. This is modified in
certain test cases to higher buffer size and number of threads to accommodate higher operation
throughputs. If the test client generates 10! operations, which is the default value, it will build a table up
to 10!𝑁 entries. We change this default value to a high number when we run a sustained Ingest test that
builds a much larger table. In a Walk-Only or Batch Walk test, N test clients continuously walk the
indexed structure that the Ingest-Only test built earlier.

We used the Accumulo monitor to observe high-level behavior and collected performance statistics using
the continuous-stats program. We conducted high-speed parallel data verification using the Accumulo
verify MapReduce job.

We used the Accumulo continuous stats collector to collect the results of the tests. The stats collector
provides the time of test, size of the table at start and end, write and read throughput, and number of
tablets used. A high read throughput amounts to a low latency. The test logs capture the counts of paths
traversed. When test results are compared, we maintain their running times to be close and use the
average value of throughputs. We have also used the MapReduce-based Verify test as a benchmark for
the table verification process. We have not used other tests in the Accumulo continuous test suite, such as
the Agitate and Scanner tests, as our main objectives are realized by the Ingest and Walker tests.

Benchmarking Apache Accumulo

 22

5.5 Test Environments
We ran the benchmarks in two cluster environments. The first environment was the AWB. The AWB is a
cluster consisting of high-performance computers and network infrastructure. The second environment we
tested was Amazon EC2. Amazon EC2 is a public cloud environment in which we used low-cost virtual
servers and shared networking. The operating system, Java Virtual Machine, Hadoop, and Accumulo
settings used when performing these benchmarks are described in Appendices A and B.

5.6 Configuration Notes
Accumulo and other configuration settings used are detailed below. These settings were based on
discussions with the developers. The operating system parameter vm.swappiness was assigned 0, the
maximum file descriptors—fs.file-max—was assigned to 65535, and the file system was mounted with
noatime,nodiratime options.

The ZooKeeper configuration had max client connections as 1,000. We used five and three ZooKeeper
instances for the AWB and Amazon EC2 clusters, respectively. In most cases, three ZooKeeper instances
were considered sufficient for fault tolerance. Adding additional ZooKeeper servers to a cluster slows
write rates but increases read rates.

As given in the directory of the distribution, we used the Accumulo configuration
$ACCUMULO_HOME/conf/examples/3GB, with the following modification for some of the optional
items to suit the cluster architecture in the AWB cluster. In the Amazon EC2 cluster, no modifications
were made except for the maximum client connections value mentioned above for ZooKeeper servers.

The Accumulo Tablet Server (commonly referred to as the tserver) was deployed on each worker node
alongside a Hadoop datanode, tasktracker, and Accumulo logger. We assigned Java heap for the tserver to
the maximum 6 GB, with a stack size of 256 KB and new generation size of 1 GB. The
tserver.memory.maps.max was assigned 6 GB in the Accumulo configuration file, accumulo-site.xml, as
native memory outside of the Java heap. Of the Java heap, 4.5 GB is reserved for index and data caches,
configured by assigning the tablet server data cache to 512 MB by configuring the tserver.cache.data.size
parameter to 512 MB. The tablet server index cache was assigned 4 GB by configuring the
tserver.index.data.size parameter to 4 GB.

We configured the Write Ahead log (using logger.dir.walog) to use one local drive and the remaining 11
drives (in the AWB cluster nodes) to be used by HDFS. The minor and major compaction threads were
configured to be six each (using tserver.compaction.major.concurrent.max and
tserver.compaction.minor.concurrent.max parameters). The tablet server block size was assigned 256 MB
(using table.file.blocksize).

The continuous tests are run via shell scripts in the test/system/continuous directory. The configuration is
controlled via continuous-env.sh. We set the number of ingest tests to run per client to 1,000,000,000.
The generation of checksums is turned off. We used the default values for maximum random row, column
family, and column qualifiers. We also used default values for maximum buffer size and number of ingest
threads. For the Walker tests, the default sleep times were used. For the Batch Walker test, we used the
default values for sleep time, batch size, and threads. To run the Cell-Level Security test, we defined the
HDFS vis.txt and auths.txt files. The parameters VISIBILITIES, AUTHS, and VERIFY_AUTHS were
assigned accordingly. To configure the Verify Table test using MapReduce, we used 200 threads each for
the map and reduce tasks. For the Cell-Level Security test, we used A, B, C, D, and E as authorization
items and the combinations {A, B, C, D, E, A&B, A&C, A&D, A&E, A|B, A|C, A|D, A|E, A&B&C,
A&B&D, A&B&E, A|B|C, A|B|D, and A|B|E} in the visibility file, and {A,B,C,D,E, {A,B,C,D,E}} in the
authorization file. These are assigned to the AUTHS, VISIBILITIES, and VERIFY_AUTHS parameters,
respectively, in continuous-env.sh.

Benchmarking Apache Accumulo

 23

6 BENCHMARK RESULTS FROM THE EMC2 ANALYTICS WORKBENCH
6.1 Continuous Test Results
We ran the Accumulo continuous tests in the EMC2 AWB cluster using a three cluster sizes: 300 nodes,
500 nodes, and 1000 nodes. Each cluster used eight servers to provide core services such as the Accumulo
master and related processes, the Hadoop Namenode and Job Tracker, and five ZooKeeper servers. As a
result, the actual number of Accumulo tablets was 287, 488, and 984, respectively. As expected in large-
scale computing environments, there were cases where servers were simply inoperative because of
hardware failures. As a result, fewer tablet servers were used for some tests. The test clients were also run
on the same computers that ran the tablet servers. Each test client was configured to perform 1 billion
operations (ingest/query) using the configurations described in Section 5.4. For some tests, we ran
multiple test clients per server. As we present these results, we use M, B, and T to represent
10! 𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 , 10!(𝑏𝑖𝑙𝑙𝑖𝑜𝑛𝑠), and 10!"(𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛𝑠). We also use GB to represent gigabytes, or
10! bytes.

6.1.1 Performance Tests
We begin by presenting results of the performance evaluation tests that examine ingest and query
throughput in isolation. These results are based on observations from running the Ingest Only, Walk
Only, and Batch Walk Only tests described in Section 5.2. Following this, we present results from tests
that examine the performance of multiple concurrent ingest and query operations—the Partial-Ingest-Full-
Walk/Batch Walk and the Full-Ingest-Full-Walk/Batch Walk tests. The latter tests show results with
simultaneous ingest and scan operations.

Ingest Only Tests
An important factor in Accumulo ingest performance is the overhead of tablet splitting activity. A tablet
split occurs when the size of the tablet exceeds the table split threshold. The split results in new tablets
that the load balancer of the master server evenly distributes across the cluster. These additional tablets
allow greater parallelism, which facilitates high throughput ingest. Table splitting quickly becomes a key
factor in Continuous Ingest test runs that begin with an empty table.

The uniform distribution of the keys in the Continuous Ingest test tends to amplify the impact of table
splitting in the context of these tests. The Continuous Ingest test generates uniformly random row IDs for
the rows to be ingested, making ingest to each tablet in the cluster equally probable, and all tablets grow
at a similar rate. Unfortunately, this means that all tablets are likely to be split at the same time, swamping
the administrative nodes with split operations.

To understand performance outside of the context of tablet splitting, we used a presplit table for ingest to
determine the best-case performance possible. We also used tables that were not presplit to estimate the
worst-case performance. In real-world scenarios, with non-uniform key distributions, performance is
expected to fall between these boundary cases.

Continuous Ingest with Presplit Tables

We performed several Ingest test runs on presplit tables that were initially empty. To defeat splitting at
ingest time, we changed the tablet-split threshold to an arbitrarily large number (128 GB in each case).
Each tablet server hosted three ingest clients, each configured to use 1 GB of buffer and 16 threads. A test
client generated 10! entries.

Table 3-1 provides the results of these runs. There were 287, 488, and 980 tablet servers overall for each
and 30, 40, and 32 tablet servers per machine in the 300, 500, and 1000 node clusters, respectively. We
stopped after the table size was 10!×𝑁, where N is the total tablet servers.

Benchmarking Apache Accumulo

 24

Cluster
Size

Tablets
per
Tablet
Server

Initial
Table Size

(Entries)

Final Table
Size
(Entries)

Test
Period
(Hours)

Maximum
(Operations
per Second)

Average
(Operations
per Second)

300 30 0 287B 2.3 42M 37M

500 40 0 488B 3.1 62M 46M

1,000 32 0 1T 2.6 165M 108M

Table 6-1: Continuous Ingest into Presplit Tables (AWB)

We ran Ingest tests with various split sizes. The values used in Table 2 represent our best ingest
performance.

Sustained Continuous Ingest with Presplit Tables

Table 6-2 presents Ingest test results for a presplit table for 26 hours in a 1,000-node cluster that had 931
tablet servers. There were three test clients per server, each with 1 GB of buffer and 16 threads. To avoid
splitting the table, we used a split threshold of 128 GB. We started the test with 942 tablet servers. During
the course of the test, 11 tablet servers went down, but the Continuous Ingest test went on without any
interruption.

Cluster
Size

Tablets
per
Tablet
Server

Initial
Table Size

(Entries)

Final Table
Size
(Entries)

Test
Period
(Hours)

Maximum
(Operations
per Second)

Average
(Operations
per Second)

1,000 33–34 0 7.56T 26 173M 94M

Table 6-2: Sustained Continuous Ingest into Presplit Tables (AWB)

Continuous Ingest Without Presplit Tables

As described previously, we observe considerable overhead as tablets split. Splits occur naturally as tables
grow: Initially, one tablet is assigned to the empty table, which is hosted on one tablet server. The table
split threshold parameter controls the table split operation. The default table split value is 1 GB. As ingest
to the table takes place and the table split threshold is reached, the tablet is split into two tablets. This
process continues as more ingests occurs. A higher-value table split threshold reduces the frequency of
the tablet splits.

In exploring the effect of the table split threshold on ingest throughput, we ran the ingest test in a
300-node cluster that had 287 test clients (each on a tablet server) and an initially empty table having the
default table split threshold of 1 GB. We also ran the test on table with 211-GB entries and a table split
threshold value of 128 GB. Although the maximum ingest throughput was the same, the average ingest
rate was considerably better, as shown in Table 6-3

The throughput profiles for these ingest tests are given in Figure 6-1 for 1 GB and in Figure 6-2 for
128 GB. The x-axis is the time (counts of half-minutes), and the y-axis is the write throughput. We noted
a more sustained ingest throughput for the second case, resulting in a higher average value for ingest
throughput (Figure 6-2).

Benchmarking Apache Accumulo

 25

Test Table
Split
Threshold

Initial
Table
Size

Table Size

(Millions of
Entries)

Test
Period
(Hours)

Maximum
Ingest
Throughput

Average
Ingest
Throughput

Ingest
Only

1 GB 0 89.98B 8.145 26,591K 3,270K

Ingest
Only

128 GB 211B 488B 6.65 27,266K 11,003K

Table 6-3: Continuous Ingest into Non-Presplit Tables (AWB)

Figure 6-1: Ingest Throughput Profile (1-GB Split Size)

Figure 6-2: Ingest Throughput Profile (128-GB Split Size)

We also ran several tests to evaluate ingest throughput without presplitting on clusters of different sizes.
There were 287, 488, and 980 Continuous Ingest test clients for the 300-, 500-, and 1,000-node
environments, respectively. Each ingest client used a 100-MB buffer and 4 threads. Different table split
threshold values were used. The results are shown in Table 6-4. Notice the higher average throughput
rates with higher split threshold values, shown in bold for the 500- and 1,000-node clusters. The rates are
within 5 percent of one another.

We investigated the performance of ingest throughput with different initial tablet distributions (table
sizes). We conducted a multiphase Ingest test with a fixed table-split threshold of 4 GB. Each test client
ran with a 100-MB buffer and 4 threads. We began with 100 concurrent ingest clients. In the second
phase of the test, we ran the test using 250 clients on the table that was previously ingested by the 100
clients to a size of 96.74 billion entries in the first phase. In the third phase of the test, we ran the test
using 500 concurrent clients (two clients per server) to ingest into the table with 193.64 billion entries that
had earlier been ingested in phases 1 and 2. The result is shown in Table 6-5.

0	

5	

10	

15	

20	

25	

30	

1	
 32
	

63
	

94
	

12
5	

15
6	

18
7	

21
8	

24
9	

28
0	

31
1	

34
2	

37
3	

40
4	

43
5	

46
6	

49
7	

52
8	

55
9	

59
0	

62
1	

65
2	

68
3	

71
4	

74
5	

77
6	

80
7	

83
8	

86
9	

90
0	

93
1	

96
2	

M
ill
io
ns
	

0	

5	

10	

15	

20	

25	

1	
 27
	

53
	

79
	

10 13 15 18 20 23 26 28 31 33 36 39 41 44 46 49 52 54 57 59 62 65 67 70 72 75 78 80 83 85

M
ill
io
ns
	

Benchmarking Apache Accumulo

 26

Cluster
Size

Tablet
Split
Threshold

Initial
Table Size

Final
Table Size

Test
Period
(Hours)

Maximum
(Operations per
Second)

Average
(Operations per
Second)

300 1 GB 4.69M 90B 5.3 9.75M 5.13M

500 1 GB 3.9M 102B 15.9 12.47M 1.86M

10 GB 102B 449B 7.1 35.65M 16.2M

128 GB 452B 559B 1.9 42.88M 18.35M

1,000 1 GB 91B 314B 24.4 22.51M 3.6M

128 GB 430B 1025B 10.3 47.59M 17.56M

Table 6-4: Continuous Ingest into Non-Presplit Tables, Varying Split Thresholds (AWB)

Table Size Start–
End (Entries)

Period
(Hours)

Max Ingest
(Operations per
Second)

Average Ingest
(Operations per
Second)

4.6M–96.74B 6.275 9.75M 5.13M

96.74B–193.63B 2.7 26.92M 10.41M

193.63B–356.5B 13.55 38.65M 3.45M

Table 6-5: Continuous Ingest on Non-Presplit Tables, Varying Initial Table Size (AWB)

The results show that with increasing table size and higher ingest load, the maximum ingest throughputs
achieved were increasingly higher. However, we observed longer periods of low ingest rates, as there was
increased table splits, file compaction, and garbage collection activities. If we allow sufficient tablet
distribution, and then increase the split threshold value of the table, we can generally expect to observe
higher average throughput.

We have observed that tablet splitting is the single most significant factor in Accumulo ingest
performance, with presplit tables able to sustain ingest rates that are 5 times higher than tables that are not
presplit. Presplit tables support greater initial parallelism and reduce data management overhead. In the
context of many real-world applications, presplitting tables is entirely possible, because the data involved
contains natural partitions. In other cases, non-uniform key distributions lessen the effect of split “storms”
as a result of concurrent split activity. In the end, splitting in Accumulo can be controlled manually by
reconfiguring the threshold parameter to achieve the best performance of any application.

Walker, Batch Walker, and Mixed Tests
The Walker and Batch Walker tests were run to examine scan latencies in different configurations. After
this, we ran mixed tests involving the Ingest and Walker tests. In the mixed tests, we had partial and full
Ingest tests, where 𝑵

𝟑
 and 𝑵 test clients were used (where 𝑁 tablet servers were available). The tables with

the results give the query throughput. A high query rate implies low latency.

Walker and Batch Walker on Presplit Tables

We ran the Walker and Batch Walker tests on a presplit table (33–34 tablets per server). One Walker and
one Batch Walker test were used per server, with a 1-GB buffer and 16 threads (Table 6-6). The table
split threshold was 128 GB. We expect that the size of the table will influence performance. We did not
examine this but had used nearly the same table sizes.

Benchmarking Apache Accumulo

 27

Test Tablet
Servers

Table Size

(Entries)

Test Period
(Hours)

Maximum
(Operations per
Second)

Average
(Operations per
Second)

300-Node Test

Walk Only 286 705B 1.0 2,880 2,559

Batch Only 286 705B 0.81 231,913 36,709

500-Node Test

Walk Only 480 1T 1.46 3,744 3,577

Batch Only 480 1T 1.07 29,988 15,489

1,000-Node Test

Walk Only 946 1T 1.5 6,197 5,821

Walk Only 938 7.56T 8.3 7,838 3,794

Batch Only 946 1T 0.8 318,624 21,977

Table 6-6: Walker and Batch Walker Tests on Presplit Tables (AWB)

The average latencies for the Walker test for 300-, 500-, and 1,000-node clusters were 0.39, 0.28, and
0.17 milliseconds, respectively. For the Batch Walker test, the average latencies were 27, 64, and
45 microseconds, respectively.

Walker and Batch Walker Tests on Non-Presplit Tables

We ran the Walker Only and Batch Walker Only tests with a 1-GB buffer and 16 threads. We used 1-GB
table split thresholds and 128-GB thresholds on relatively large tables. We do not expect these settings to
affect query throughput, as no tablet split can occur during this test. The table size is expected to influence
performance. Table 6-7 presents results on 300-, 500-, and 1,000-node clusters with 287, 486, and 984
test clients.

The average latencies for the Walker test for 300-, 500-, and 1,000-node clusters were 0.50, 0.29, and
1.40 milliseconds, respectively. For the Batch Walker test, these averages were 32, 95, and
51 microseconds, respectively. The multiple threads employed by the Batch Walker test in combination
with cluster size have a direct effect on the order of magnitude of query latency. For smaller tables, we
noticed that the throughputs were comparable to the results for presplit tables.

Full and Partial Ingest, Walker, and Batch Walker Tests
The results of Ingest throughput and Walk test in a Full-Ingest-Full-Walk/Batch Walk (287 ingest clients)
and Partial-Ingest-Full-Walk/Batch Walk (90, 150, and 300 ingest test clients, respectively) in 300-, 500-,
and 1,000-node clusters are given in Table 6-8 and Table 6-9. The results in are based on the observations
from running the tests on presplit and general tables, respectively. For the presplit table tests, the table
split threshold was 128 GB, and the test client used a 10-GB buffer and 16 threads. For the general table
tests, we used the default values of 1 GB, 1 GB, and 4 threads for these parameters.

Benchmarking Apache Accumulo

 28

Test Table Size

(Entries)

Test Period
(Hours)

Maximum
(Operations per
Second)

Average
(Operations per
Second)

300-Node Test

Walk Only 280B 2.777 3,620 1,979.4

Batch Only 280.3B 0.9913 84,041 31,103

500-Node Test

Walk Only 635.2B 2.16 3,619 3553

Batch Only 635.3B 2.78 157,101 10,454

1,000-Node Test

Walk Only 314.5B 2.11 2,522 713

Walk Only
(128 GB)

1288.6B 0.391 2,403 90

Batch Only 314.5B 0.593 567,392 19,467

Batch Only
(128 GB)

1288.6B 5.068 105,302 3,700

Table 6-7: Walk and Batch Walker Tests, Varying Cluster Sizes (AWB)

Ingest

Type

Walk

Type

Initial
Table
Size

Final
Table
Size

Tablet
Servers

Test
Period
(Hours)

Max
Ingest
(Opera
tions
per
Second
)

Max
Query
(Operati
ons per
Second)

Average
Ingest
(Operatio
ns per
Second)

Average
Query
(Operati
ons per
Second)

300 Nodes

Full Walk 705B 978B 286 3.5 37.6M 1,404 23M 249

500 Nodes

Full Walk 1T 1.18T 478 1.44 49.4M 15,315 19.35M 988

Part Walk 1.25T 1.38T 478 2.6 21.8 3,054 14.57M 1,478

1,000 Nodes

Full Walk 1T 1.25T 946 0.98 102M 5,242 55M 3,734

Full Walk 7.56T 7.8T 938 3.2 109M 3,400 35M 1,999

Part Walk 1.25T 1.36T 946 1.1 43M 8,887 29M 6,840

Table 6-8: Mixed Workloads on Presplit Tables (AWB)

Benchmarking Apache Accumulo

 29

Ingest
Type

Walk
Type

Initial
Table
Size

Final
Table
Size

Test Period
(Hours)

Max
Ingest
(Operations
per Second)

Max
Query
(Operations
per Second)

Average
Ingest
(Operations
per Second)

Average
Query
(Operations
per Second)

300 Nodes

Full Walk 488B 525B 1.18 20.
4M

408 8.8M 9.2

Partial Walk 605B 626B 1.04 6.8
M

231 5.8M 9.34

Full Batch 525B 603B 2.494 10.
8M

82K 9.0M 1,088

Partial Batch 626B 680B 2.43 6.9
M

89K 6.5M 1,244

500 Nodes

Full Walk 1580B 1725B 1.97 35.
8M

141 25.2M 8.1

Partial Walk 1731B 1767B 0.86 13.
8M

124 12.7M 16.1

1,000 Nodes

Full Walk 416B 420B 0.84 7.5
M

1,658 1.5M 65

Partial Walk 424B 428B 0.72 7.7
M

1,230 1.5M 70

Partial Walk 1,289B 1,335B 1.01 16.
0M

2,318 13.0M 42

Table 6-9: Mixed Workloads on Non-Presplit Tables (AWB)

As expected, we noted an increase in query throughput in partial ingest cases compared with the full
ingest cases. We note a significant drop in query throughput in the case of the non-presplit table, mainly
because of the impact of tablet split overhead resulting from the ingest operations. However, we observe
marginal improvement in query throughput in case of partial tests.

6.1.2 Scalability Tests
Scalability is the ability to perform operations at the same level of throughput as the cluster size and loads
are increased proportionately. We examine the results of performance tests as the cluster size increases.
We determine the ingest throughput for different numbers of tablet servers using the results described in
Table 6-1, and run tests with loads proportional to cluster sizes. For a cluster with N tablet servers, we
used the load of ingesting a table of size N billion entries, starting from an initially empty table.
Figure 6-3 gives the average ingest, query, and batch query rates for presplit tables.

Benchmarking Apache Accumulo

 30

Figure 6-3: Average Throughputs in Presplit Table Clusters of Increasing Size (AWB)

For a non-presplit table, we ran the ingest test for 5.5 to 6 hours on clusters that had 300, 500, and
1,000 nodes (287, 488, and 980 tablet servers and test clients). The table ingested was empty initially. As
each test client was ingesting 1 billion rows, we expect 287 billion, 488 billion, and 980 billion table
entries to be ingested as the proportionate loads. We did not reach these volumes within the test time
window. Instead, we found 54 billion, 49 billion, and 84 billion entries in the table at the time once we
stopped each test. Each test client was configured to perform up to 10! operations, used a 100-MB buffer,
and had 4 threads. Table 6-10 presents the throughputs observed. We also ran the Walker and Batch
Walker tests on tables that had 89 billion, 635 billion, and 314 billion entries.

Test Initial
Table
Size

Final
Table
Size

Period
(Hours)

Max (Operations
per Second)

Average
(Operations per
Second)

300-Node Test

Ingest 0 54B 5.5 23,821,770 3,187,710

Walk 89B 89B 2.7 6,239 1,252.34

Batch Walk 89B 89B 0.5 121,796 35,272

500-Node Test

Ingest 0 49B 5.5 12,346,126 2,069,606

Walk 635B 635B 2.7 3,619 3,549

Batch Walk 635B 635B 2.7 157,101 10,453

1,000-Node Test

Ingest 0 86B 6.0 17,468,545 4,089,657

Walk 314B 314B 2.1 2,522 713

Batch Walk 314B 314B 0.5 567,392 19,467

Table 6-10: Scalability on Non-Presplit Tables (AWB)

As observed earlier, ingest throughput in Accumulo can be high, reaching a maximum throughput of
more than 150 million inserts per second for a presplit table. Average throughput can also be near
100 million inserts per second in this case. High ingest throughputs can be maintained for a presplit table,
as well. In the case of non-presplit tables with the highest expected run time system overhead of multiple
table splitting at the same time, ingest throughputs can be in the range of 3 million to 20 million inserts
per second (on average). We saw an improvement in ingest rates in the non-presplit table after some time
when a sufficiently large number of tablets was created and distributed across the cluster.

0"

20"

40"

60"

80"

100"

120"

0" 200" 400" 600" 800" 1000" 1200"

M
ill
io
ns
'

Ingest'Rates'(pre1split)''

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

0" 200" 400" 600" 800" 1000" 1200"

Query&rates*&Walker&(pre*split)&

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

40000"

0" 200" 400" 600" 800" 1000" 1200"

Query&rates*Batch&Walkers&(pre*split)&

Benchmarking Apache Accumulo

 31

In the Walker and Batch Walker tests, we found that latencies were generally in the tens of milliseconds
and microseconds ranges, respectively, for both presplit and non-presplit tables. In mixed tests, we found
more stable performance for the presplit tables, where both the Ingest and Walker tests were running at
the same time. For non-presplit tables, the latencies increased as more ingest occurred.

The scalability is almost linear in the case of presplit tables, as more test loads are introduced in
proportion to the size of the test cluster. This is not quite so for a non-presplit table.

The performance and scalability figures are generally better than most distributed table stores for which
benchmark data is available. The presplit table test provided the best-case scenario, and the non-presplit
table case provided the worst-case scenario. In practice, we expect performance to lie within these two
extreme cases. Our tests were based on random generation of row references. In a weighted scheme of
row reference, we expect better performance for non-presplit tables.

6.1.3 Cell-Level Security Test
To examine the performance cost of cell-level security (ACL), we ran the Ingest test with and without the
feature (Table 6-11). This feature is activated via flags along with visibility and authorization text files in
the HDFS directory. These files are configured in continuous-env.sh. The results show that the variation
in average throughput is within 15 percent of each other.

Continuous
Ingest Test

Table Size
(Millions of
Entries)

Period
(Hours)

Maximum Ingest Average
Ingest

500

No ACL 0–34.5B 4.56 8.2M 2.2M

With ACL 0–33.5B 3.75 9.0M 2.5M

1,000

No ACL 0–86B 6.03 17.5M 4.1M

With ACL 0–75.5B 6.00 22.6M 3.5M

Table 6-11: Continuous Ingest with Varying Visibilities (AWB)

6.1.4 MapReduce Table Verification Tests
The Table Verification Test uses variables defined in mapred-setup.sh and continuous-env.sh. It launches
a MapReduce job to run the verify table program available in the continuous test suite. The elapsed times
of this test are given in Table 6-12.

Cluster Size Table Size
(Entries)

Mappers Reducers Time

300 1.46B 200 200 41 min, 16 sec

1,000 12.3B 200 200 34 min, 46 sec

1,000 1T 10,000 5,000 17 hours

Table 6-12: MapReduce Table Verification (AWB)

6.2 YCSB Results
We used the five workloads employed in the original YCSB workload packages and performed 10,000
operations. Clusters of 300, 500, and 1,000 nodes were used for the YCSB benchmark test. The default

Benchmarking Apache Accumulo

 32

buffer size was 100 KB. We also used a new workload, Workload F, which used an ingest ratio of 1 and
was designed to perform ingest (insert/update) with different buffer sizes. We ran a test client with a
single thread and 50 threads, respectively, for each workload. The number of records was 10,000 for each
workload, as in YCSB. We used buffer sizes of 10 KB, 100 KB, 1 MB, 10 MB, and 100 MB with
Workload F. Table 6-13 and Table 6-14 show the throughput and latency values for the tests. The
behavior is similar to that reported earlier [26].

We observed that a 100-KB buffer provides a higher ratio of throughput to latency. The throughput and
latency are given for each workload and cluster size. The top number is the throughput in operations per
second, and the lower number is the latency in milliseconds.

Note that the ingest rates in Table 6-13 are tiny compared with those for the Accumulo Continuous Ingest
test. This is because only one ingest client was used in the YCSB test. When multiple threads were used,
the single client resulted in higher ingest throughput in general, although these were still not comparable
to the continuous ingests tests run with a large number of test clients. The latency figures from these tests
are very close to what was obtained by the Accumulo Continuous Walker test.

Nodes Workload (1 Thread)

A B C D E F

 10 KB 100 KB 1 MB 10
MB

100
MB

300 11.20

0.205

5.93

0.033

5.78

172.72

8.28

0.10

5.71

0.11

181.88

5.39

202.24

4.82

539.57

1.65

1559

0.16

1225

0.028

500 - - - - 1.5

0.127

601.1

1.56

1295.3

0.672

2963.8

0.229

3974

0.12

4361

0.03

1,000 16.85

0.022

8.66

0.07

9.03

110.5

12.45

0.09

8.63

0.11

1430.6

0.5571

3497.7

0.149

4616.8

0.069

4814
0.05

4344

0.03

Table 6-13: YCSB++ Single Thread Workload (AWB)

Nodes Workload (50 Threads)

A B C D E F

 10 KB 100 KB 1 MB 10
MB

100
MB

300 369.45

0.024

238.6

0.031

219.27

180.51

272.8

0.125

199.6

0.138

5512.6

3.50

3348.9

2.855

5007.5

0.635

7501
0.68

6983

0.768

500 575.27

0.031

284.0

0.034

261.23

157.81

267.5

0.124

300

0.126

- - - - -

1,000 94.63

0.027

50.76

0.036

49.02

1003.6

60.52

0.09

48.59

0.133

4370.6

2.56

4500.4

1.774

5000

0.242

3643

0.50

3726

0.223

Table 6-14: YCSB++ 50 Thread Workload (AWB)

Benchmarking Apache Accumulo

 33

7 BENCHMARK RESULTS FROM AMAZON EC2

7.1 Continuous Test Results
We ran the Accumulo continuous tests on Amazon EC2 clusters of 100, 330, 500, and 1,000 tablet server
configurations. For each test run, we used six additional servers that ran the core services. These included:
one Accumulo master, one Hadoop name node, one Hadoop JobTracker, and the three ZooKeeper
servers. All instances were m1.large with initial tests performed using Ubuntu server version 11.10 and
later tests using Ubuntu 12.10. Instances used EBS- based root devices without provisioned IOPS. HDFS
and Accumulo data were stored on local ephemeral disk. Further details are given in Appendix C. These
instances were located in the US-West-1 (California) and US-West-2 (Oregon) regions.

An Amazon EC2 m1.large instance has about one-sixth resident memory and one-fourth core of the slave
machines used in the test on AWB. This setup obviously put tighter restrictions in memory allocation to
the service and test processes. As with the tests on the AWB, test clients were run on the same machines
that ran the tablet servers. Each test client was configured to perform one billion operations (ingest/query)
using the configurations described in Section 5.4. In running high-throughput tests on presplit tables, a 60
MB buffer size was used and the number of threads was set to four to avoid resource exhaustion. In the
results we present here, we use M, B and T to represent 10! 𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 , 10!(𝑏𝑖𝑙𝑙𝑖𝑜𝑛𝑠), and
10!"(𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛𝑠). We also use GB to represent gigabytes, 10! bytes.

7.1.1 Performance Tests
We present results of ingest and query throughputs. As in the tests for the AWB detailed in the previous
section, we ran the Ingest Only, Walker Only, and Batch Walker Only tests. To understand the best-case
performance, we ran the tests on presplit tables. We also used tables that were not presplit to estimate
worst-case performance. Furthermore, we ran a set of Partial-Ingest-Full-Walker/Batch Walker and Full-
Ingest-Full-Walker/Batch Walker tests.

Ingest Only Tests
We ran Ingest tests on presplit tables as well as on tables without presplits. Although the former scenario
excludes the overhead of tablet-split operations, both had file compaction and load-balancing overhead.

Continuous Ingest with Presplit Tables

We used presplit tables that were initially empty. We used splits that resulted in around 15–16 tablets per
tablet server, and modified the table-split threshold to 128 GB. We had one set of ingest clients, each
client configured to use a 60 MB buffer and 4 threads.

Table 7-1gives the results of these runs. These tests were run in the US-West-2 region. There were 100,
500, and 995 tablet servers overall for each, and 15 and 16 tablet servers per machine. In the cluster, the
Accumulo master, Hadoop Name Node, and Hadoop JobTracker services were run on separate server
nodes. Additionally, three separate server nodes were used to form the ZooKeeper quorum, with each
hosting a ZooKeeper service instance. In each case, we ran the test for 4–5 hours continuously. In each
case, the initial table size was zero.

Sustained Continuous Ingest with Presplit Tables

Table 7-2 presents Ingest test results for a presplit table for 11 hours on a 1,000-node cluster with 931
tablet servers. Due to a lack of resource availability in the US-West-2 region, this test was run in the US-
West-1 region. Throughout the course of this test, we observed a relatively lower throughput than for a
shorter run of the same test in the US-West-2 region (as Table 16 shows). In investigating the cause of
this throughput degradation, we compared TCP ping times between a few pairs of nodes within the US-

Benchmarking Apache Accumulo

 34

West-1 and US-West-2 regions. In all cases, we observed on average a two-times higher ping time in the
US-West-1 region compared with the US-West-2 region. This issue was not present for other tests
executed in the US-West-1 region; in those cases, we verified and found that the ping values were in line
with those experienced in US-West-2. Unfortunately, we were unable to re-run this test once the
throughput issue had abated.

For this run, we used three test clients per server, each with a 1 GB buffer and 16 threads. To avoid
splitting, the table split threshold used was 128 GB. We started the test with 942 tablet servers. During the
course of the test, five tablet servers went down, but the Continuous Ingest test went on without any
interruption.

Cluster
Size

Tablets
per
Tablet
Server

Initial
Table Size
(Entries)

Final Table
Size
(Entries)

Test
Period
(Hours)

Maximum
(Operations
per Second)

Average
(Operations
per Second)

16 40 0 4.58 B 2.9 0.781 M 0.441 M

100 15 0 56.60 B 4.925 5.673 M 3.280 M

330 15 0 105 B 3.65 14.410 M 8.256 M

500 15 0 170 B 4.51 20.178 M 10.870 M

1,000 15 0 205.4 B 4.23 25.085 M 14.076 M

Table 7-1: Continuous Ingest into Presplit Tables (Amazon EC2)

Cluster
Size

Tablets
per
Tablet
Server

Initial
Table Size

(Entries)

Final Table
Size
(Entries)

Test
Period
(Hours)

Maximum
(Operations
per Second)

Average
(Operations
per Second)

1,000 15–16 0 0.332 T 11 20 M 9 M

Table 7-2: Sustained Continuous Ingest into Presplit Tables (Amazon EC2)

Continuous Ingest Without Presplit Tables

As in the case of AWB, we used tests run on tables without presplit as a worst-case scenario. Each table
begins the test with a single tablet. As the amount of data in a tablet approaches a threshold, the tablet
splits in two. The process of splitting introduces latency into ingest but ultimately allows the load to be
distributed across multiple tablet servers. The default table split threshold is 1 GB. These tests were run
on US-West-2.

Cluster
Size

Tablet
Split
Threshold

Initial
Table Size

Final
Table Size

Test
Period
(Hours)

Maximum
(Operations per
Second)

Average
(Operations per
Second)

16 1 GB 1.68M 10.718M 18.38 272,362 167,081

100 1 GB 1.1M 1.3B 1.11 1,703,227 315,091

500 1 GB 4.2M 27.332B 12.8 4,264,292 617,420

Table 7-3: Continuous Ingest into Non-Presplit Tables (Amazon EC2)

Benchmarking Apache Accumulo

 35

Walker, Batch Walker, and Mixed Tests
The Walker and Batch Walker tests were run to examine scan latencies in different configurations. We
also ran mixed tests involving the simultaneous running of the Ingest and Walker tests. In the Partial
Ingest test, we used one-third of the Ingest test clients than that of Walker test clients.

Walker and Batch Walker on Presplit Tables

We ran the Walker and Batch Walker tests on a presplit table with 15–16 tablets per server. One test
client was used on each tablet server node with a 60-MB buffer and 4 threads. The table split threshold
was set to 128 GB to prevent splitting. The tests on a 100-node cluster were run on the US-West-1 region.
The tests on the 330, 500 and 1000 node clusters were run in the US-West-2 region.

Test

Table Size
(Entries)

Test Period
(Hours)

Maximum (Operations
per Second)

Average (Operations
per Second)

100-Node Test

Walk Only 12.82 B 0.94 2.52 K 2.19 K

Batch Only 12.82 B 0.94 89.67 K 18.41 K

330-Node Test

Walk Only 105,074 0.92 2.46 K 2.27 K

Batch Only 105,074 0.57 242.98 K 21.52 K

500-Node Test

Walk Only 171,605 0.92 3.6 K 1.77 K

Batch Only 171,605 0.94 278.65 K 27.24 K

1,000-Node Test

Walk Only 207,358 0.43 4.75 K 4.07 K

Batch Only 207,358 0.51 439.45 K 38.73 K

Table 7-4: Walker and Batch Walker Tests on Presplit Tables (Amazon EC2)

With respect to Table 7-4, the average query latencies for the Walker test for the 100-, 330-, 500-, and
1,000-node clusters were 0.45, 0.44, 0.57, and 0.25 milliseconds, respectively. For the Batch Walker test,
these were 54.3, 46.5, 36.7, and 25.8 microseconds, respectively. Parallel query execution and cluster size
contribute to an order of magnitude difference in latency.

In terms of throughput in bytes per second, noting that the table entry size is 50 to 54 bytes, the query
throughput in the Batch Walker tests for 100 tablet servers reached almost a million bytes per second. For
330 tablet servers, it was 1.2 million bytes per second. It reached a 2.1 million bytes per second query rate
for the 995 tablet servers. The tests were running a typical workload and were not specifically
investigating maximum query throughput.

Benchmarking Apache Accumulo

 36

Walker and Batch Walker Tests on Non-Presplit Tables

We ran the Walker Only and Batch Walker Only tests with a 60-MB buffer and 4 threads. We used 1-GB
table split thresholds. We did not expect the table split threshold to impact query throughput, as no tablet
split may occur during these tests. The table size was expected to influence performance, with larger
tables supporting more parallel transactions. Table 7-5 presents results on 100- and 500-node clusters
with the same order of test clients.

Test

Table Size
(Entries)

Test Period
(Hours)

Maximum
(Operations per
Second)

Average
(Operations per
Second)

100-Node Test

Walk Only 143.112 B 3.58 279 217

Batch Only 143.112 B 1.9 98,453 1421

500-Node Test

Walk Only 27.295 B 0.90 701 211

Batch Only 27.295 B 1.33 121,081 4697

Table 7-5: Walker and Batch Walker Tests on Non-Presplit Tables (Amazon EC2)

The average latencies for the Walker test for 100- and 500-node clusters were 4.6 and 4.7 milliseconds,
respectively. For the Batch Walker test, these were 0.7 and 0.2 milliseconds, respectively.

Full and Partial Ingest, Walker, and Batch Walker Tests
The results of ingest throughput and walk latency in a Full-Ingest-Full-Walker/Batch Walker (~100 and
500 ingest clients) and Partial-Ingest-Full-Walk/Batch Walk (30 and 150 test clients) in 100- and
500-node clusters are given here. The table split threshold was 128 GB for these tests for both the100-
and 500-node clusters. Before the mixed tests were run, we grew the table to an initial size of the order of
4–10 B entries. Then we ran the mixed-mode tests. Table 7-7 and Table 7-8 contain the results for presplit
and non-presplit tables.

Ingest
Type

Walk
Type

Initial
Table
Size

Final
Table
Size

Test
Period
(Hours
)

Maximu
m Ingest
(Operati
ons per
Second)

Maximu
m Query
(Operati
ons per
Second)

Average
Ingest
(Operati
ons per
Second)

Average
Query
(Operati
ons per
Second)

100 Nodes

Full Walk 8.6 B 10.5 B 0.59 2.95 M 1051 974 K 482

Partial Walk 10.5 B 14.0 B 0.71 2.42 M 1166 1.39 M 611

500 Nodes

Full Walk 3.9 B 6.2 B 0.25 6.3 M 822 2.52 M 163

Partial Walk 7.0 B 9.1 B 0.28 5.6 M 4794 2.16 M 1581

Table 7-6: Mixed Workloads on Presplit Tables (Amazon EC2)

Benchmarking Apache Accumulo

 37

Ingest
Type

Walk
Type

Initial
Table
Size

Final
Table
Size

Test
Period
(Hours
)

Maximu
m Ingest
(Operati
ons per
Second)

Maximu
m Query
(Operati
ons per
Second)

Average
Ingest
(Operati
ons per
Second)

Average
Query
(Operati
ons per
Second)

100 Nodes

Full Walk 1.4 B 4.0 B 0.55 2.5 M 18,542 1.32 M 6198

Partial Walk 4.1 B 7.4 B 0.73 2.3 M 1145 1.23 M 661

500 Nodes

Full Walk 1.5 B 2.4 B 0.27 1.9 M 5928 670 K 2691

Partial Walk 2.4 B 3.1 B 0.29 1.8 M 7329 610 K 5063

Table 7-7: Mixed Workloads on Non-Presplit Tables (Amazon EC2)

7.1.2 Scalability Tests
We evaluated scalability by observing the test performance on clusters of increasing size and
proportionately increasing workloads. This was achieved by increasing the number of test clients in
conjunction with the cluster size. As in the case of the test on the AWB cluster, we used the average
ingest from Table 7-1 and query rates from Table 7-4. Figure 7-1 gives the plots for the average ingest,
query, and batch query rates for presplit table.

Figure 7-1: Average Throughputs in Presplit Table Clusters of Increasing Size

We used 10, 100, 330, 500, and 995 parallel test clients in 16-, 100-, 330-, 500-, and 1,000-node
Amazon EC2 m1.large instance-based clusters. We observed the ingest rates increased almost linearly,
dropping slightly after 500 nodes for the Ingest test. The query rates were linear with the size of the
cluster.

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

0" 200" 400" 600" 800" 1000" 1200"

Query&Rates&+&walker&(pre+split)&

0"
5000"
10000"
15000"
20000"
25000"
30000"
35000"
40000"
45000"

0" 200" 400" 600" 800" 1000" 1200"

Query&Rates&+&Batch&Walker&(pre+
split)&&&&&&&&&&&&&&&&&&&&

0"

2"

4"

6"

8"

10"

12"

14"

16"

0" 500" 1000" 1500"

M
ill
io
ns
&

Ingest&Rates&+&(pre+split)&

Benchmarking Apache Accumulo

 38

7.1.3 Cell-Level Security Test
We evaluated performance with and without the cell-level security options. We used the same visibility,
authorization files, and flags as used in the AWB tests. Table 23 gives the results for running the Ingest
test with and without ACL on clusters of 100 and 500.

Continuous
Ingest Test

Table Size
(Millions of
Entries)

Period
(Hours)

Maximum Ingest Average
Ingest

100

No ACL 0–1.7 B 0.9 2.4 M 0.5 M

With ACL 0–1.6 B 1.0 1.7 M 0.5 M

500

No ACL 0–1.4 B 1.5 0.9 M 0.3 M

With ACL 0–1.7 B 1.5 1.8 M 0.3 M

Table 7-8: Continuous Ingest with Varying Visibilities (Amazon EC2)

We saw that results are quite close, indicating any overhead, corresponding to the ACL attributes used, is
not significant.

7.1.4 MapReduce Table Verification Tests
The Hadoop MapReduce job to verify a table of 12 million entries took 2 minutes, 57 seconds with 10
map threads on a 10-node cluster. It took 9 minutes, 12 seconds with 200 map threads in a 100-node
cluster.

7.2 YCSB Results
We ran the YCSB++ benchmarks on 10- and 100-node configurations on the Amazon EC2 US-West-2
region using m1.large instances as described previously. We used the five YCSB++ workloads and
Workload F as in the AWB test. Table 24 and Table 25 give the throughput and latency observed for each
workload and cluster size. In each table entry, the top number is the throughput in operations per second
and the bottom number is the latency in milliseconds.

Nodes Workload (1 Thread)

A B C D E F

10 KB 100 KB 1 M 10 M 100 M

10 158.1

0.04

84.54

0.06

81.37

12.23

90.32

0.24

49.6

0.201

379.88

2.56

996.9

0.92

2884.3

0.244

2897

0.14

2824

0.078

100 167.97

0.046

98.24

0.065

94.67

10.47

107.3

0.196

50.53

0.198

601.1

1.56

1295.3

0.672

2963.8

0.229

3974

0.12

4361

0.03

Table 7-9: YCSB++ Single Thread Workload (Amazon EC2)

Benchmarking Apache Accumulo

 39

Nodes Workload (50 Threads)

A B C D E F

10 KB 100 KB 1 M 10 M 100 M

10 570.2

0.372

295.4

0.63

284.74

162.95

313.4

0.247

156.7
1.126

987.26

33.82

2836.8

9.58

3567.6

3.144

3209

3.62

3121

3.65

100 1310.6

1.05

1131

2.42

1162.8

35.79

1062

0.893

449.7

3.808

1120.7

36.028

1324.1

22.657

1113.2

8.746

978

10.2

-

Table 7-10: YCSB++ 50 Thread Workload (Amazon EC2)

Benchmarking Apache Accumulo

 40

8 CONCLUSION
We have presented results for several benchmark tests using the continuous test suite available with the
open source distribution of Accumulo distributed key-value store. We have used the Ingest, Walker, and
Batch Walker tests independently as well as in mixed mode for defining different workloads of write and
read operations. We have used the Verify test to run table verification tests that use Hadoop MapReduce.
We have also tested the overhead of using a cell-level ACL for ingest operations.

A fixed number of test clients were run on a slave node of the cluster that hosts a tablet server in the
Accumulo configuration. This makes the number of test clients proportional to the number of tablet
servers. In general, by increasing the number of test clients and associated buffers, when the local servers’
resources allow it, we could increase the operational load on the table store.

We used two target test environments: a high-performance cluster provided by AWB and an
Amazon EC2 cloud-based standard commodity cluster. The platform differences are apparent in the
benchmark results we captured. There are multiple factors that impact performance. Nevertheless, we
were able to observe a number of salient features of throughput/latency, scalability, and sustained ingest.

We observed that on a 1,000-node configuration, the average ingest performance for presplit tables
reached an order of 100 million table entry (equivalent to 5.4 billion bytes per second) ingest operations
per second on the AWB high-performance cluster. This value is around 14 million table entry ingest
operations per second (equivalent to 0.8 billion bytes per second) on a 1,000-node Amazon EC2
(m1.large instance) cluster. Overall, we observed that the Ingest test performance on the AWB high-
performance cluster was around 7 to 10 times faster than on the Amazon EC2 cluster. We observed that
the scalability of the Accumulo table store was almost linear with the size of the cluster in both cluster
environments.

We observed that the Walker and Batch Walker test performance on the AWB high-performance cluster
and the Amazon EC2 cluster were generally similar. We observed a query rate of the order of 2 million
bytes per second with batch walker in both of the cluster environments used in our tests. In the mixed-
mode tests, generally, a lower ingest load with the same walk load resulted in better query rates. Our
results for running the Ingest test with and without the cell-level ACL feature showed very low overhead
in both environments.

The continuous test suite workload is defined by the ingest of the large continuous linked-list structure
and the traversal using the Walker and Batch Walker tests (as well as other tests in the suite, such as the
Scanner test). These test workloads correspond to an application environment that gives insight into
operations on indexed and graph-like data structures. We have also run the YCSB workloads in our
benchmark study on both cluster environments, including an examination of the impact of different buffer
sizes in performance.

Benchmarking Apache Accumulo

 41

9 ACKNOWLEDGEMENTS
We would like to wholeheartedly thank the Accumulo developers Eric Newton and Keith Turner for
valuable suggestions of testing procedures, system configurations, and troubleshooting approaches; the
EMC2/Greenplum AWB team members Tasneem Maistry and Clinton Ooi for their enthusiasm and
extensive support for conducting the test on the AWB; the EMC2/Greenplum business development and
consulting team, Nick Cayou, Michael Parks, and Don Miner, for their support in planning this activity;
and Paul Brown and Aaron Cordova of Koverse for helping to get the ball rolling on this work. We would
like to thank Todd Hildebrant and Dave Hirko of AWS for all the help provided.

Benchmarking Apache Accumulo

 42

10 REFERENCES

1. R. Cattell. Scalable SQL and NoSQL Data Stores. http://cattell.net/datastores/Datastores.pdf.
2. M. Seltzer. 2008. Beyond Relational Databases. Communications of the ACM, 51(7).
3. R. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. Gruber. November 2006. “BigTable: A Distributed Storage System for Structured
Data.” In Proc. of the 7th USENIX Symposium on Operating Systems Design and
Implementation. Seattle, WA: OSDI 2006.

4. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. October 2007. “Dynamo: Amazon’s Highly
Available Key-Value Store.” In Proc. of the 21st ACM Symposium on Operating Systems
Principles. Stevenson, WA: SOSP 2007.

5. HBase. Apache HBase. http://hbase.apache.org/.
6. Apache Cassandra. http://cassandra.apache.org/.
7. Project Voldemort. http://project-voldemort.com.
8. Apache Accumulo. http://accumulo.apache.org.
9. M. Cafarella, E. Chang, A. Fikes, A. Halevy, W. Hsieh, A. Lerner, J. Madhavan, and S.

Muthukrishnan. 2008. Data Management Projects at Google. SIGMOD Record, 37(1).
10. SciDB. Use Cases for SciDB. http://www.scidb.org/use/.
11. SimpleDB. http://aws.amazon.com/simpledb.
12. SQL Data Services/Azure Services Platform. http://www.microsoft.com/azure/data.mspx.
13. Google App Engine. http://appengine.google.com.
14. Yahoo! Query Language. http://developer.yahoo.com/yql/.
15. TPC Transaction Processing Performance Council.

http://www.tpc.org/information/benchmarks.asp.
16. Standard Performance Evaluation Corporation. http://www.spec.org/benchmarks.html.
17. J.L. Seng, Y. Lin, J.C. Wang. 2008. “A Comparative Study of Database Benchmark in Internet

Commerce.” hicss, vol. 8, pp.263, 35th Annual Hawaii International Conference on System
Sciences. HICSS 02-Volume 8.

18. L. Gillam, B. Li, J. O’Loughlin, A. P. S. Tomar. 2012. “Fair Benchmarking for Cloud Computing
Systems.” University of Surrey Technical Report.

19. J. Gray, editor. 1993. “The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann.

20. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
R.E. Gruber. “BigTable: A Distributed Storage System for Structured Data.” OSDI 2006.

21. “Benchmarking Cassandra Scalability on AWS—Over a Million Writes per Second.”
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html.

22. “Hypertable vs. HBase Performance Evaluation II.”
http://hypertable.com/why_hypertable/hypertable_vs_hbase_2/.

23. B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears. June 10-11, 2010.
“Benchmarking Cloud Serving Systems with YCSB.” In Proc. of the 1st ACM Symposium on
Cloud Computing. SoCC 2010.

24. B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, R. Yerneni. August 2008. “PNUTS: Yahoo!’s hosted data serving platform.” Proc.
VLDB Endowment, Volume 1, Issue 2.

25. MySQL Cluster. http://www.sql.com/tech-resources/articles/mysql-cluster-7.2-ga.html.

Benchmarking Apache Accumulo

 43

26. S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson, A. Fuchs, B. Rinaldi.
October 27-28, 2011. “YCSB++: Benchmarking and Performance Debugging Advanced Features
in Scalable Table Stores.” Cascais, Portugal: SOCC 2011.

27. Graph Data Structure. http://www.algorithmist.com/index.php/Graph_data_structures.
28. EMC/Greenplum AWB Whitepaper. http://www.greenplum.com/sites/default/files/Greenplum-

Analytics-Workbench-Whitepaper.pdf.
29. Amazon EC2. http://aws.amazon.com/ec2/.
30. P. O’Neil, E. Cheng, D. Gawlick, E. O’Neil. 1996. “The Log-Structured Merge-Tree (LSM-

Tree).” Acta Informatica, Volume 33, Issue 4, pp. 351-385.
31. Apache Hadoop. http://hadoop.apache.org.
32. Apache Accumulo User Manual Version 1.4. http://accumulo.apache.org/1.4/user_manual/.
33. Greenplum UAP Stack. http://www.greenplum.com/sites/default/files/2012_0209_UAP_WP.pdf.
34. Apache ZooKeeper. http://zookeeper.apache.org.
35. Apache Accumulo in the Cloud. Amazon EC2. http://www.slideshare.net/acordova00/accumulo-

on-ec2.
36. Apache Accumulo Tutorial. http://www.accumulodata.com/ec2.html.

Benchmarking Apache Accumulo

 44

11 APPENDIX A: EMC2/GREENPLUM CLUSTER CONFIGURATION
The EMC2/Greenplum AWB is built to provide a mixed-mode environment to support innovation and
validation in data warehousing and management at scale. Mixed-mode environments provide an easy way
to combine structured and unstructured data using both traditional SQL and Apache Hadoop/no-SQL
techniques without having to rework existing processes.

The AWB is a large server cluster organized as 50 data racks, three core racks, and one infrastructure
rack. There are 1,000 data nodes, six master nodes, and a number of infrastructure nodes to support
deployments, monitoring, and data loading.

Each of the data racks contains 20 data nodes, and each node encompasses 12 disk drives. The first two
drives are mirrored OS currently running CentOS 6.1. The additional 10 drives are Just a Bunch of Disks
used for data partitions. There are 50 data racks (20 data nodes per rack). A data rack has switches and
data nodes. A data node has 12 disk drives; disk 0 and disk 1 are RAID 1 (mirrored for OS), 12x2 TB
drives (Seagate 7200 rmp), 48 GB memory, dual Intel Westmere (Hex-core) CPUs—24 cores total. The
master nodes are 98 GB memory, 6x 136 GB 2.5” drives (RAID 5), dual Intel Westmere (Hex-core)
CPUs—24 cores total, 1/2U nodes in four-node chassis. Inside a core rack, there are four layer-2
Mellanox switches, one top-of-the-rack Mellanox switch, one layer-2 Netgear switch, two four-blade 2U
SuperMicro chassis. The infrastructure rack contains six layer-3 Mellanox switches, one top-of-the-rack
Mellanox switch, two layer-3 Netgear switches, one SMC switch, two four-blade 2U SuperMicro chassis,
10 2U SuperMicro. The cluster is running Greenplum Hadoop, GPHD 1.2, based on the open source
Apache 1.0.3 Hadoop stack. The additional patches on top of Apache Hadoop 1.0.3 consist of the
Greenplum stack. The vision is to have the Greenplum Unified Analytics Platform (UAP) stack running
on the AWB. This offering includes Greenplum DB, Greenplum HD, and Greenplum Chorus. This suite
will allow collaboration among data scientist teams, providing a platform that can process structured and
unstructured data seamlessly. The team is currently building out this vision by having Greenplum HD,
and very soon Greenplum DB, collocated on the AWB. More info about the UAP stack can be found in
[33].

The Apache Accumulo configurations in the AWB cluster environment described previously had a
master, Apache Hadoop name server, and Apache Hadoop JobTracker running on separate servers. We
had five Apache ZooKeeper servers in quorum, as Figure A-1 shows. Typically, we had the remaining
nodes as data and tablet servers. Hadoop data nodes and Accumulo tablet servers were co-located on the
same node. These nodes were also used as test clients. The servers were configured to run Sun/Oracle
Java 1.6. We used a separate client node to launch tests and collect results.

Figure A-1: AWB Cluster Topology and Server Locations

The AWB will continue to offer a 1,000-node instance of Apache Accumulo available to any project
interested in using this product. This will provide another tool for projects to do big data analytics. The
cell-level security provided by Apache Accumulo will allow projects interested in processing sensitive

Infra&Rack&(0)&&

Core&Rack&(51)&& Core&Rack&(52)&& Core&Rack&(53)&&

Data&Rack&(1617)&& Data&Rack&(18634)&& Data&Rack&(35650)&&

72&Fiber&cables&

4&Fiber&cables/rack&

Zookeeper&nodes:&
name2,&job1,&mst4&

Accumulo&master&
node:&mst1&

Jobtracker&and&
nameserver:&job1&
and&name1&

Zookeeper&nodes:&
mst2,mst3&

Tasktracker,&tablet&servers,&data&nodes&

Benchmarking Apache Accumulo

 45

data, such as healthcare data, a mechanism to do so on the AWB. Faster analytics, with the ability to store
petabytes of data on the AWB, could provide groundbreaking insights.

Benchmarking Apache Accumulo

 46

12 APPENDIX B: EMC2/GREENPLUM SERVICES CONFIGURATION
12.1 Apache Accumulo Parameters
(Accumulo-env.sh)

(Accumulo-site.xml)

12.2 Hadoop parameters
(hadoop-env.sh)
HADOOP_HEAPSIZE=1000
HADOOP_NAMENODE_OPTS="-Xmx65536m -server -XX:ParallelGCThreads=8 -XX:+UseConcMarkSweepGC
-XX:ErrorFile=/var/log/gphd/hadoop/hs_err_pid%p.log -XX:NewSize=3G -XX:MaxNewSize=3G -
Xloggc:/var/log/gphd/hadoop/gc.log-`date +'%Y%m%d%H%M'` -verbose:gc -XX:+PrintGCDetails -
XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Dsecurity.audit.logger=INFO,DRFAS -
Dhdfs.audit.logger=INFO,DRFAAUDIT -Dcom.sun.management.jmxremote
.management.jmxremote
HADOOP_SECONDARYNAMENODE_OPTS="-Xmx65536m -server -XX:ParallelGCThreads=8 -
XX:+UseConcMarkSweepGC -XX:ErrorFile=/var/log/gphd/hadoop/hs_err_pid%p.log -XX:NewSize=3G -
XX:MaxNewSize=3G -Xloggc:/var/log/gphd/hadoop/gc.log-`date +'%Y%m%d%H%M'` -verbose:gc -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Dsecurity.audit.logger=INFO,DRFAS
-Dhdfs.audit.logger=INFO,DRFAAUDIT -Dcom.sun.management.jmxremote
HADOOP_DATANODE_OPTS="-Xmx1024m -Dcom.sun.management.jmxremote
HADOOP_BALANCER_OPTS="-Dcom.sun.management.jmxremote
HADOOP_JOBTRACKER_OPTS="-Xmx65536m -server -XX:ParallelGCThreads=8 -
XX:+UseConcMarkSweepGC -XX:ErrorFile=/var/log/gphd/hadoop/hs_err_pid%p.log -XX:NewSize=3G -
XX:MaxNewSize=3G -Xloggc:/var/log/gphd/hadoop/gc.log-`date +'%Y%m%d%H%M'` -verbose:gc -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Dsecurity.audit.logger=INFO,DRFAS
-Dmapred.audit.logger=INFO,MRAUDIT -Dmapred.jobsummary.logger=INFO,JSA -
Dcom.sun.management.jmxremote

JAVA_HOME=$JAVA_HOME
HADOOP_HOME=$HADOOP_LOCATION
ACCUMULO_LOG_DIR=$ACCUMULO_HOME/logs
ZOOKEEPER_HOME="$ZOOKEEPER_HOME”
ACCUMULO_TSERVER_OPTS="-­‐Xmx6g	
 -­‐Xms6g	
 -­‐Xss256k	
 -­‐XX:NewSize=1G”
ACCUMULO_MASTER_OPTS="-­‐Xmx1g	
 -­‐Xms128m”
ACCUMULO_GC_OPTS="-­‐Xmx128m	
 -­‐Xms64m”
ACCUMULO_MONITOR_OPTS="-­‐Xmx128m	
 -­‐Xms64m”
ACCUMULO_LOGGER_OPTS="-­‐Xmx1g	
 -­‐Xms128m”
ACCUMULO_GENERAL_OPTS="-­‐XX:+UseConcMarkSweepGC	
 -­‐
XX:CMSInitiatingOccupancyFraction=75”
ACCUMULO_OTHER_OPTS="-­‐Xmx4g	
 -­‐Xms64m"

logger.dir.walog	
 	
 Value	
 -­‐	
 	
 /data1/accumulo-1_4/walogs,/data2/accumulo-1_4/walogs
tserver.logger.count	
 	
 2	

tserver.memory.maps.max	
 6G	

tserver.cache.data.size	
 	
 512M	

tserver.cache.index.size	
 	
 4G	

tserver.compaction.major.concurrent.max 10
tserver.compaction.minor.concurrent.max 10
table.file.blocksize 256M

Benchmarking Apache Accumulo

 47

 (from mapred-site.xml)

mapred.map.tasks = 12
mapred.reduce.tasks = 8
mapred.tasktracker.map.tasks.maximum = 12
mapred.tasktracker.reduce.tasks.maximum = 8
mapred.map.child.java.opts = -Xmx1536M
mapred.reduce.child.java.opts = -Xmx4096M
mapred.map.tasks.speculative.execution = true
mapred.reduce.tasks.speculative.execution = true
mapreduce.tasktracker.outofband.heartbeat = true
io.sort.mb = 10
tasktracker.http.threads = 60
mapred.job.tracker.handler.count = 120
mapred.tasktracker.shuffle.provider.plugin = com.mellanox.hadoop.mapred.UdaShuffleProviderPlugin

(from hdfs-site.xml)

dfs.replication = 3
dfs.datanode.handler.count = 32
dfs.namenode.handler.count = 100
dfs.datanode.max.xcievers = 3000
dfs.name.dir = /data/hadoop/name
dfs.data.dir=
/data1/hadoop/data,/data2/hadoop/data,/data3/hadoop/data,/data4/hadoop/data,/data5/hadoop/data,/data6/h
adoop/data,/data7/hadoop/data,/data8/hadoop/data,/data9/hadoop/data,/data10/hadoop/data
dfs.block.size = 134217728

12.3 ZooKeeper parameters
(from zoo.cfg)

tickTime=2000
initLimit=10
syncLimit=5
maxClientCnxns=1000
globalOutstandingLimit=10000

Benchmarking Apache Accumulo

 48

13 APPENDIX C: AMAZON EC2 CLUSTER CONFIGURATION
The Amazon EC2 cluster was created with Amazon EC2 m1.large instances. The Apache Accumulo,
Apache Hadoop, and Apache ZooKeeper services were configured and run on the cluster. The
configuration was adapted from [36] with some modifications. Apache Accumulo release version 1.4.2,
Apache Hadoop version 1.0.4, and Apache ZooKeeper version 3.4.3 were used. Test clients were co-
located on the slave nodes. The nodes ran Ubuntu versions 11 and 12. Instances were run in the same
availability zone.

13.1 Node Types in Cluster
• One Accumulo Master node. Hosting Apache Accumulo master, monitor, garbage collector

services

• Three ZooKeeper nodes. Quorum peers running Apache ZooKeeper services.

• One HDFS NameNode. Hosting Apache Hadoop NameNode service

• One JobTracker node. Hosting Apache Hadoop JobTracker service

• Remaining nodes in cluster are slave nodes. Hosting Apache Accumulo tablet servers, loggers,
Apache Hadoop TaskTrackers, and DataNodes

13.2 Preparing Amazon Machine Instance for Amazon EC2 Instances
Using the Amazon EC2 services dashboard, a standard Ubuntu Amazon Machine Instance is launched.
Ubuntu Server (64-bit) version 12.04.01 Precise Pangolin was used. An ephemeral storage device
/dev/sdb is available by default. Add an addition ephemeral device /dev/sdc. A security group with ports
open to allow Secure Shell (SSH), TCP, and User Datagram Protocol ports 0-65000 (doing so allows
access to the Accumulo, Hadoop, and ZooKeeper services on default ports), Internet Control Message
Protocol, and the HTTP port 80 is created to be associated with the launched instance.

Log into the instance via SSH using proper security credentials. The main steps to install software and
prepare devices are given here. Example shell commands are given in the box. We assume the Amazon
security keys are available in ~/.ec2 and Amazon EC2 client library is available in ~/.ec2/bin, which is
also the working directory.

a) SSH into the Amazon EC2 instance. The access code for the private key file should be 600.

b) Configure a password-less SSH for the instance.

c) Upload helper scripts and the split files (Section 13.7). Check the script testhosts.sh to confirm

the internal IP is created properly. For example, in the case of AZ us-west-2, the script should
have “us-west-2.compute.internal” and for AZ us-west-1, it should be us-west-
1.compute.internal.

ssh -i ~/.ec2/ranjankey.pem ubuntu@ec2-54-245-169-199.us-west-2.compute.amazonaws.com

#configure passwordless SSH
#create a ssh key pair (with default key files and empty passphrase)
ubuntu@ip-10-253-76-162:~$ ssh-keygen
#(append the public key to the authorized_keys file)
#edit the /etc/ssh/ssh_config file to uncomment StrictHostKeyChecking and set the value to ‘no’
sudo vi /etc/ssh/ssh_config

Benchmarking Apache Accumulo

 49

d) Run install.sh script as root from /opt as working directory to install the Apache Hadoop, Java

software development kit, required library, Apache Accumulo, Apache ZooKeeper, and other
required software; add file system and mount drives; and copy the Apache Library into Apache
Hadoop /lib.

e) Set up home paths, classpaths, library, and paths. Add the following lines into ~/.bashrc and

reinitialize environment variables. Make the appropriate change to versions of jars and other
values as necessary.

f) Configure Hadoop.

$ scp -i X.pem * ubuntu@ec2-50-18-147-116.us-west-1.compute.amazonaws.com:/home/ubuntu

conf-slaves.sh 100% 1394 1.4KB/s 00:00
conf-zk.sh 100% 184 0.2KB/s 00:00
copy-parallel-duper.sh 100% 1015 1.0KB/s 00:00
copy-parallel.sh 100% 1299 1.3KB/s 00:00
etchosts.sh 100% 89 0.1KB/s 00:00
install.sh 100% 2144 2.1KB/s 00:00
installYCSB.sh 100% 309 0.3KB/s 00:00
setZK.sh 100% 253 0.3KB/s 00:00
setupData.sh 100% 782 0.8KB/s 00:00
setupDataAll.sh 100% 79 0.1KB/s 00:00
swappiness-spread.sh 100% 299 0.3KB/s 00:00
sync-continuous-env.sh 100% 218 0.2KB/s 00:00
testhosts.sh 100% 245 0.2KB/s 00:00

ubuntu@ip-10-253-19-149:/opt$ sudo bash ~/install.sh

ubuntu@ip-10-253-19-149:/opt$ sudo chown -R ubuntu .

export JAVA_HOME="/usr/lib/jvm/java-6-openjdk-amd64"
export HADOOP_HOME="/opt/hadoop"
export ACCUMULO_HOME="/opt/accumulo"
export ZOOKEEPER_HOME="/opt/zookeeper"
export LIBJARS=$ZOOKEEPER_HOME/zookeeper-3.4.3.jar:$ACCUMULO_HOME/lib/libthrift-
0.6.1.jar:$ACCUMULO_HOME/lib/accumulo-core-1.4.3.jar:$ACCUMULO_HOME/lib/cloudtrace-
1.4.3.jar:ACCUMULO_HOME/lib/commons-collections-3.2.jar:$ACCUMULO_HOME/lib/commons-configuration-
1.5.jar:$ACCUMULO_HOME/lib/commons-io-1.4.jar:$ACCUMULO_HOME/lib/commons-jci-core-
1.0.jar:$ACCUMULO_HOME/lib/commons-jci-fam-1.0.jar:$ACCUMULO_HOME/lib/commons-lang-
2.4.jar:$ACCUMULO_HOME/lib/commons-logging-1.0.4.jar:$ACCUMULO_HOME/lib/commons-logging-api-1.0.4.jar
export CLASSPATH=$HADOOP_HOME/hadoop-core-1.0.4.jar:$HADOOP_HOME/hadoop-tools-1.0.4.jar:$LIBJARS
export CLASSPATH=$CLASSPATH:"/home/ubuntu/YCSB/db/accumulo/conf"
export PATH=$PATH:$ACCUMULO_HOME/bin:$JAVA_HOME/bin

Benchmarking Apache Accumulo

 50

In hadoop-env.sh add JAVA_HOME, add the following tags
HADOOP_NAMENODE_OPTS="-Xmx7000m -server -XX:ParallelGCThreads=4 -XX:+UseConcMarkSweepGC -
XX:NewSize=256M -XX:MaxNewSize=256M"
HADOOP_SECONDARYNAMENODE_OPTS="-Xmx7000m -server -XX:ParallelGCThreads=4 -
XX:+UseConcMarkSweepGC -XX:NewSize=256M -XX:MaxNewSize=256M"
HADOOP_JOBTRACKER_OPTS="-Xmx7000m -server -XX:ParallelGCThreads=4 -XX:+UseConcMarkSweepGC -
XX:NewSize=256M -XX:MaxNewSize=256M"
HADOOP_DATANODE_OPTS="-Xmx512m -Xms512m"
HADOOP_TASKTRACKER_OPTS="-Xmx256m -Xms256m"
export HADOOP_NAMENODE_OPTS="-Dcom.sun.management.jmxremote $HADOOP_NAMENODE_OPTS"
export HADOOP_SECONDARYNAMENODE_OPTS="-Dcom.sun.management.jmxremote
$HADOOP_SECONDARYNAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dcom.sun.management.jmxremote $HADOOP_DATANODE_OPTS"
export HADOOP_BALANCER_OPTS="-Dcom.sun.management.jmxremote $HADOOP_BALANCER_OPTS"
export HADOOP_JOBTRACKER_OPTS="-Dcom.sun.management.jmxremote $HADOOP_JOBTRACKER_OPTS"

Place the following in the $HADOOP_HOME/conf/core-site.xml
<name>fs.default.name</name>
<value>hdfs://<IP address of namenode>:9000</value>
</property>
Add the following tags in $HADOOP_HOME/conf/hdfs-site.xml
<property>
<name>dfs.name.dir</name>
<value>/mnt/namenode</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/mnt/hdfs,/mnt2/hdfs</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.datanode.handler.count</name>
<value>12</value>
</property>
<property>
<name>dfs.namenode.handler.count</name>
<value>40</value>
</property>
<property>
<name>dfs.datanode.max.xcievers</name>
<value>3000</value>
</property>
<property>
<name>dfs.block.size</name>
<value>134217728</value>
</property>

Benchmarking Apache Accumulo

 51

g) Configure Accumulo.

Add the following property and values in $HADOOP_HOME/conf/mapred-site.xml
<property>
<name>mapred.job.tracker</name>
<value>10.253.79.156:9001</value>
</property>
<property>
<name>mapred.local.dir</name>
<value>/mnt/mapred,/mnt2/mapred</value>
</property>
<property>
<name>mapred.child.java.opts</name>
<value>-Xmx512m</value>
</property>
<property>
<name>mapred.map.tasks</name>
<value>1</value>
</property>
<property>
<name>mapred.reduce.tasks</name>
<value>1</value>
</property>
<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>1</value>
</property>
<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>1</value>
</property>
<property>
<name>mapred.map.child.java.opts</name>
<value>-Xmx512m</value>
</property>
<property>
<name>mapred.reduce.child.java.opts</name>
<value>-Xmx512m</value>
</property>
<property>
<name>mapred.map.tasks.speculative.execution</name>
<value>true</value>
</property>
<property>
<property>
<name>mapred.reduce.tasks.speculative.execution</name>
<value>true</value>
</property>
<property>
<name>mapred.tasktracker.outofband.heartbeat</name>
<value>true</value>
</property>
<property>
<name>io.sort.mb</name>
<value>10</value>
</property>
<property>
<name>tasktracker.http.threads</name>
<value>40</value>
</property>
<property>
<name>mapred.job.tracker.handler.count</name>
<value>80</value>
</property>

Benchmarking Apache Accumulo

 52

h) Configure ZooKeeper.

i) Configure continuous test.

copy the conf/examples/3GB/standalone/* to the conf directory, add JAVA_HOME, HADOOP_HOME and
ZOOKEEPER_HOME in accumulo-env.sh, add JAVA_HOME into accumulo-env.sh

export JAVA_HOME="/usr/lib/jvm/java-6-openjdk-amd64" (replace actual path)
test -z "$ACCUMULO_TSERVER_OPTS" && export ACCUMULO_TSERVER_OPTS="${POLICY} -Xmx2000m -
Xms2000m -XX:NewSize=256m -XX:MaxNewSize=512m"
test -z "$ACCUMULO_MASTER_OPTS" && export ACCUMULO_MASTER_OPTS="${POLICY} -Xmx1g -
Xms1g"
test -z "$ACCUMULO_MONITOR_OPTS" && export ACCUMULO_MONITOR_OPTS="${POLICY} -Xmx1g -
Xms256m"
test -z "$ACCUMULO_GC_OPTS" && export ACCUMULO_GC_OPTS="-Xmx256m -Xms256m"
test -z "$ACCUMULO_LOGGER_OPTS" && export ACCUMULO_LOGGER_OPTS="-Xmx1g -Xms256m"
test -z "$ACCUMULO_GENERAL_OPTS" && export ACCUMULO_GENERAL_OPTS="-
XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75"
test -z "$ACCUMULO_OTHER_OPTS" && export ACCUMULO_OTHER_OPTS="-Xmx1g -Xms256m"
export ACCUMULO_LOG_HOST=`(grep -v '^#' $ACCUMULO_HOME/conf/masters ; echo localhost) 2>/dev/null |
head -1`

create a logs directory in $ACCUMULO_HOME
ubuntu@ip-10-253-76-162:/opt/accumulo$ mkdir logs

in accumulo-site.xml change password to ‘root’
<property>
 <name>trace.password</name>
 <value>root</value>
</property>
<property>
 <name>logger.dir.walog</name>
 <value>/mnt/walogs</value>
 </property>
 <property>
 <name>tserver.memory.maps.max</name>
 <value>1500M</value>
 </property>
 <property>
 <name>tserver.cache.data.size</name>
 <value>50M</value>
 </property>
 <property>
 <name>tserver.cache.index.size</name>
 <value>256M</value>
 </property>

copy the master/slaves files

ubuntu@ip-10-254-11-47:/opt/accumulo$ vi conf/accumulo-site.xml
ubuntu@ip-10-254-11-47:/opt/accumulo$ vi conf/accumulo-site.xml
ubuntu@ip-10-254-11-47:/opt/accumulo$ cp ~/acc-masters conf/masters
ubuntu@ip-10-254-11-47:/opt/accumulo$ cp ~/acc-masters conf/monitor
ubuntu@ip-10-254-11-47:/opt/accumulo$ cp ~/acc-masters conf/gc
ubuntu@ip-10-254-11-47:/opt/accumulo$ cp ~/acc-masters conf/tracers
ubuntu@ip-10-254-11-47:/opt/accumulo$ cp ~/slaves conf/slaves

create conf/zoo.cfg by copying conf/zoo_sample.cfg and adding the following into zoo.cfg
dataDir=/tmp/zookeeper
the port at which the clients will connect
clientPort=2181
server.1=<zookeeper server1>:2888:3888
server.2=<zookeeper server2>:2888:3888
server.3=<zookeeper server3>:2888:3888

maxClientCnxns=1000

Benchmarking Apache Accumulo

 53

j) Install and configure pssh.

k) Ensure $ACCUMULO_HOME/test/system/continuous/logs directory is present.

We create an image of this instance and use it in launching cluster nodes.

13.3 Configure an Amazon EC2 Instance Cluster
First, we created an image of the instance created in Section 14.2. To create an Amazon EC2 instance
cluster of N nodes, we launch N instance from this image. Because the image has password-less SSH
configured, all the cluster nodes can SSH into each other without passwords and do not prompt for
known-hosts authentication.

13.3.1 Identifying Accumulo, Hadoop, and ZooKeeper Nodes
Once the N instances in the cluster are running, we access and control them from a client machine. On
this client machine, we use the script get-running-instance-default.sh to obtain the instance descriptions.
Section 14.7 gives the Amazon EC2 helper scripts. We use the scripts proc-instance-domains.sh and proc-
instance-IP.sh to get the public domain names and the internal IP addresses of the instances. We use
public domain names to access the nodes from the client machine. We upload the internal IP addresses to
the Apache Accumulo master node. This node acts as the main point of setting up and distributing the
configuration files across the cluster.

Once the IP addresses of all the cluster nodes are uploaded to the Accumulo master node, we SSH into it
and create the following files:

a) acc-master. Contains the IP address of the Accumulo master node
b) master. Contains the IP addresses of the Hadoop NameNode and JobTracker
c) zknodes. Contains the IP addresses of the ZooKeeper nodes
d) slaves. Contains the IP addresses of the N-6 nodes, which are Accumulo slaves hosting the tablet

and logger services as well as the Hadoop data nodes and TaskTrackers

Illustration is given in the box.

#initialize the test/system/continuous files
create continuous-env.sh from continuous-env.sh.example and ensure the following
put the proper values to HADOOP_HOME, ACCUMULO_HOME, JAVA_HOME, ZOOKEEPER_HOME
Ensure
INSTANCE=ci
USER=root
PASS=root
TABLE=ci
CHECKSUM=false
NUM_THREADS=4
MAX_MEM=1000000000

create ingesters.txt from ingesters.txt.example
create walkers.txt from walkers.txt.example
create batch_walkers.txt from batch_walkers.txt.example
#create scanner.txt from scanner.txt.example

install parallel-ssh
ubuntu@ip-10-254-17-100:~$ sudo apt-get install pssh
ubuntu@ip-10-254-17-100:~$ cd /usr/bin
ubuntu@ip-10-254-17-100:/usr/bin$ sudo ln -s parallel-ssh pssh

Benchmarking Apache Accumulo

 54

Log in to the controller node, and create the acc-masters, masters, zknodes, and slaves files.

Edit the testhosts.sh file to remove the shutdown command, save it, and run the script etchosts.sh to edit
the /etc/hosts file across the cluster to use IPV4. Doing so will reboot all the machines.

Configure Hadoop by adding the IP addresses of the NameNode (the first IP address in the masters file)
and JobTracker (second IP address in the masters file) in the core-site.xml and mapred-site.xml files, and
initialize the masters and slaves files.

Configure Accumulo by adding the IP addresses of the ZooKeeper nodes in the accumulo-site.xml file,
and initialize the masters, monitor, tracers, gc, and slaves files from the acc-master, and slaves file in the
home directory of the Accumulo master.

Configure ZooKeeper, adding the IP values in zknodes for server1, server2, and server3 in zoo.cfg.

Sync these files across clusters using the conf-slaves.sh script. In larger clusters, use the copy-parallel.sh
script for faster synchronization. The latter script uses a number of nodes to copy the files in parallel. It
requires a file first containing the IP addresses of the nodes (say p of them) that will perform the parallel
copy and p files—fileX, where X = 1, 2, … p containing the target nodes for each. These files need to be
present in the home directory, which is where the scripts are run.

From the home directory, run the setupDataAll.sh and setZK.sh scripts to initialize the local files for
Hadoop file system use and initializing the IDs and files for the ZooKeepers.

$. get-running-instances-default.sh >instances
$. proc-instances-domain.sh
$. proc-instances-IP.sh >allnodes
$ scp -i <**.pem> allnodes ubuntu@<public domain name of controller>:/home/ubuntu/allnodes

$. etchosts.sh

Add namenode in core-site.xml
Add jobtracker in mapred-site.xml
Copy the ~/masters to $HADOOP_HOME/conf/masters
Copy the ~/slaves to $HADOOP_HOME/conf/slaves

Add zookeepers into accumulo-site.xml
Copy the ~/acc-masters to $ACCUMULO_HOME/conf/masters
Copy the ~/acc-masters to $ACCUMULO_HOME/conf/monitor
Copy the ~/acc-masters to $ACCUMULO_HOME/conf/tracers
Copy the ~/acc-masters to $ACCUMULO_HOME/conf/gc
Copy the ~/slaves to $ACCUMULO_HOME/conf/slaves

$. setupDataAll.sh
$. setZK.sh

$. conf-slaves.sh
$. swappiness-spread.sh

$. copy-parallel.sh
$. conf-zk.sh
$. swappiness-spread.sh

Benchmarking Apache Accumulo

 55

Configure the continuous test files on the Accumulo master, which is where the tests are launched later.
Edit the IP of the ZooKeepers in the continuous-env.sh file; copy the ~/slaves into ingester.txt, walker.txt,
batch_walker.txt, and scanner.txt

13.3.2 Starting Services

SSH into
the NameNode, format the Hadoop file system (needed one time), and start the hdfs service. Check that
the services are running by jps—NameNode and SecondaryNameNode will run on the NameNode, and
DataNode will run on the slave nodes.

On the JobTracker node, start the mapreduce service. Check that JobTracker is running on the JobTracker
node and TaskTrackers are running on the slaves.

Start the ZooKeepers on each ZooKeeper node.

13.4 Create Instance and Run Accumulo
Init instance and Start Accumulo:

$ACCUMULO_HOME/bin/accumulo init

(The instance is ‘ci’ and the root password is ‘root’.)

On the Hadoop NameNode, run the following to verify instance creation:

ubuntu@ip-10-253-42-16:/opt/hadoop$ bin/hadoop fs -ls /accumulo/instance_id

Start Accumulo:

$ACCUMULO_HOME/bin/start-all.sh

Check that the tablet servers are registered in ZooKeeper:

$ZOOKEEPER_HOME/bin/zkCli.sh –server <zk server>

Use the <monitor domain name>:50095 to launch the monitor page on a Internet browser.

13.5 Run Continuous Tests
Change the working directory:

cd $ACCUMULO_HOME/test/system/continuous/

Run the statistics collection program:
. start-stats.sh

Run the ingest test:
. start-ingest.sh

$HADOOP_HOME/bin/hadoop namenode –format

$HADOOP_HOME/bin/start-dfs.sh

$HADOOP_HOME/bin/start-mapred.sh

$ZOOKEEPER_HOME/ java -cp zookeeper-3.4.3.jar:lib/slf4j-api-1.6.1.jar:lib/slf4j-log4j12-
1.6.1.jar:lib/log4j-1.2.15.jar:conf:. org.apache.zookeeper.server.quorum.QuorumPeerMain
conf/zoo.cfg

Benchmarking Apache Accumulo

 56

13.5.1 Creating Table—Partitioning Table
For testing with a presplit table, a split file is used. The split file is generated using a utility class called
GenSplits that is included in the Continuous ingest code in Accumulo 1.5 and higher.

Use the split file to split the table ci.

13.5.2 Checking Results
In the Accumulo master node, $ACCUMULO/test/system/continuous/logs directory the files <time-
stamp>*stats.out will have summary results of the tests.

In the test clients (slaves), the logs in the same path will have individual ingest client outputs in <time-
stamp>*ingest.out.

The results of walker and batch walker tests will be in similar files with ‘walker’ and ‘batch_walker’
substituted for ‘ingest’.

13.6 Helper Scripts and Split Files
The following scripts are used for instance creation, initialization, configuration, copying, and
synchronizing across clusters. The accumulo-gensplits.tar.gz contains the split file generation utility. The
command is:

$java –cp target/accumulo-gensplits-1.4.2.jar org.apache.accumulo.util.GenSplits <number of splits> <split-file-
name>

13.6.1 install.sh
#!/bin/bash
run this from /opt directory as ubuntu

sudo sysctl -w vm.swappiness=0
echo -e "ubuntu\t\tsoft\tnofile\t65536" | sudo tee --append /etc/security/limits.conf
echo -e "ubuntu\t\thard\tnofile\t65536" | sudo tee --append /etc/security/limits.conf

install software
RELEASE=`lsb_release -c | awk {'print $2'}`
sudo apt-get install python-software-properties -y
sudo add-apt-repository "deb http://archive.canonical.com/ $RELEASE partner"

wget http://www.fightrice.com/mirrors/apache/hadoop/common/stable/hadoop-1.0.4.tar.gz
tar -xzf hadoop-1.0.4.tar.gz
ln -s hadoop-1.0.4 hadoop

wget http://download.nextag.com/apache/zookeeper/zookeeper-3.4.3/zookeeper-3.4.3.tar.gz
tar -xzf zookeeper-3.4.3.tar.gz
ln -s zookeeper-3.4.3 zookeeper

sudo apt-get update
sudo apt-get install openjdk-6-jdk -y
java -version

sudo apt-get install gcc g++ python-software-properties xfsprogs -y

get Accumulo

wget http://www.bizdirusa.com/mirrors/apache/accumulo/1.4.3/accumulo-1.4.3-dist.tar.gz

ubuntu@ip-10-254-17-100:/opt/accumulo$ bin/accumulo shell -u root -p root
root@ci> createtable ci
root@ci> addsplits –sf <split file path> -t ci
root@ci> offline –t ci
root@ci> online –t ci
also, run the following to flush the !METADATA table
root@ci> flush –t !METADATA

Benchmarking Apache Accumulo

 57

tar -xzf accumulo-1.4.3-dist.tar.gz
ln -s accumulo-1.4.3 accumulo

sudo cp accumulo/lib/accumulo-core-1.4.3.jar hadoop/lib/
sudo cp accumulo/lib/log4j-1.2.16.jar hadoop/lib/
sudo cp accumulo/lib/libthrift-0.6.1.jar hadoop/lib/
sudo cp accumulo/lib/cloudtrace-1.4.3.jar hadoop/lib/
sudo cp zookeeper/zookeeper*.jar hadoop/lib/
setup data directory

sudo umount /mnt;
sudo /sbin/mkfs.xfs -f /dev/xvdb;
sudo mount -o noatime /dev/xvdb /mnt;

change this if /dev/sdc is available
sudo mkdir /mnt2;
sudo /sbin/mkfs.xfs -f /dev/xvdc;
sudo mount -o noatime /dev/xvdc /mnt2;

sudo chown -R ubuntu /mnt

sudo mkdir /mnt/hdfs
sudo mkdir /mnt/namenode
sudo mkdir /mnt/mapred
sudo mkdir /mnt/walogs

sudo mkdir /mnt2/hdfs
sudo mkdir /mnt2/mapred

sudo chown -R ubuntu /mnt/hdfs
sudo chown -R ubuntu /mnt/namenode
sudo chown -R ubuntu /mnt/mapred
sudo chown -R ubuntu /mnt/walogs

sudo chown -R ubuntu /mnt2/hdfs
sudo chown -R ubuntu /mnt2/mapred

chown of hadoop, accumulo and zookeeper directories recursively

sudo chown -R ubuntu hadoop
sudo chown -R ubuntu accumulo
sudo chown -R ubuntu zookeeper

13.6.2 conf-slaves.sh
#!/bin/bash
for i in `cat /home/ubuntu/allnodes`; do
echo "copying to " $i
#moving hadoop
 #scp -q /opt/hadoop/conf/hadoop-env.sh ubuntu@$i:/opt/hadoop/conf/hadoop-env.sh
 scp -q /opt/hadoop/conf/core-site.xml ubuntu@$i:/opt/hadoop/conf/core-site.xml
 scp -q /opt/hadoop/conf/mapred-site.xml ubuntu@$i:/opt/hadoop/conf/mapred-site.xml
scp -q /opt/hadoop/conf/hdfs-site.xml ubuntu@$i:/opt/hadoop/conf/hdfs-site.xml
 scp -q /opt/hadoop/conf/masters ubuntu@$i:/opt/hadoop/conf/masters
 scp -q /opt/hadoop/conf/slaves ubuntu@$i:/opt/hadoop/conf/slaves

#moving accumulo
 #scp -q /opt/accumulo/conf/accumulo-env.sh ubuntu@$i:/opt/accumulo/conf/accumulo-env.sh
 scp -q /opt/accumulo/conf/accumulo-site.xml ubuntu@$i:/opt/accumulo/conf/accumulo-site.xml
 scp -q /opt/accumulo/conf/masters ubuntu@$i:/opt/accumulo/conf/masters
 scp -q /opt/accumulo/conf/slaves ubuntu@$i:/opt/accumulo/conf/slaves
 scp -q /opt/accumulo/conf/gc ubuntu@$i:/opt/accumulo/conf/gc
 scp -q /opt/accumulo/conf/monitor ubuntu@$i:/opt/accumulo/conf/monitor
 scp -q /opt/accumulo/conf/tracers ubuntu@$i:/opt/accumulo/conf/tracers

done

for ii in `cat /home/ubuntu/zknodes`; do
#moving zookeeper

Benchmarking Apache Accumulo

 58

 echo "zookeeper conf to " $ii
 scp -q /opt/zookeeper/conf/zoo.cfg ubuntu@$ii:/opt/zookeeper/conf/zoo.cfg
done

13.6.3 setupData.sh
#!/bin/bash
sudo umount /mnt;
sudo /sbin/mkfs.xfs -f /dev/xvdb;
sudo mount -o noatime /dev/xvdb /mnt;

change this if /dev/sdc is available
sudo mkdir /mnt2;
sudo /sbin/mkfs.xfs -f /dev/xvdc;
sudo mount -o noatime /dev/xvdc /mnt2;

sudo chown -R ubuntu /mnt
#sudo chown -R ubuntu /mnt2

sudo rm -rf /mnt/hdfs
sudo rm -rf /mnt/namenode
sudo rm -rf /mnt/mapred
sudo rm -rf /mnt/walogs

sudo mkdir /mnt/hdfs
sudo mkdir /mnt/namenode
sudo mkdir /mnt/mapred
sudo mkdir /mnt/walogs

sudo rm -rf /mnt2/hdfs
sudo rm -rf /mnt2/mapred

sudo mkdir /mnt2/hdfs
sudo mkdir /mnt2/mapred

sudo chown -R ubuntu /mnt/hdfs
sudo chown -R ubuntu /mnt/namenode
sudo chown -R ubuntu /mnt/mapred
sudo chown -R ubuntu /mnt/walogs

sudo chown -R ubuntu /mnt2/hdfs
sudo chown -R ubuntu /mnt2/mapred

13.6.4 etchosts.sh
#!/bin/bash
pssh -h /home/ubuntu/allnodes -t 100 sudo bash /home/ubuntu/testhosts.sh

13.6.5 testhosts.sh
!/bin/bash
hostname | awk '{split($1, parts, "-"); print parts[2]"."parts[3]"."parts[4]"."parts[5]"\tip-"parts[2]"-"parts[3]"-"parts[4]"-"parts[5]".us-west-
1.compute.internal\tip-"parts[2]"-"parts[3]"-"parts[4]"-"parts[5] > "/etc/hosts" }'

#shutdown reboot – delete this line on the controller node (acc-master)
sudo shutdown –r now

13.6.6 swappiness-spread.sh
#!/bin/bash
count=0
for i in `cat /home/ubuntu/allnodes`; do
 ssh -o "StrictHostKeyChecking no" $i "echo; rm -rf /home/ubuntu/.ssh/known_hosts; touch /home/ubuntu/.ssh/known_hosts";
 ssh $i sudo sysctl vm.swappiness=0; ((count++)); echo $count $i
 ssh $i sudo sysctl fs.file-max=65536;
done

13.6.7 conf-zk.sh

#!/bin/bash
for ii in `cat /home/ubuntu/zknodes`; do
#moving zookeeper
 echo "zookeeper conf to " $ii

Benchmarking Apache Accumulo

 59

 scp -q /opt/zookeeper/conf/zoo.cfg ubuntu@$ii:/opt/zookeeper/conf/zoo.cfg
done

13.6.8 copy-parallel.sh
#!/bin/bash
count=0
for i in `cat /home/ubuntu/first`; do
echo "copying to " $i
#moving hadoop
 scp -q /opt/hadoop/conf/core-site.xml ubuntu@$i:/opt/hadoop/conf/core-site.xml
 scp -q /opt/hadoop/conf/mapred-site.xml ubuntu@$i:/opt/hadoop/conf/mapred-site.xml
 #scp -q /opt/hadoop/conf/hdfs-site.xml ubuntu@$i:/opt/hadoop/conf/hdfs-site.xml
 scp -q /opt/hadoop/conf/masters ubuntu@$i:/opt/hadoop/conf/masters
 scp -q /opt/hadoop/conf/slaves ubuntu@$i:/opt/hadoop/conf/slaves

#moving accumulo
 scp -q /opt/accumulo/conf/accumulo-site.xml ubuntu@$i:/opt/accumulo/conf/accumulo-site.xml
 scp -q /opt/accumulo/conf/masters ubuntu@$i:/opt/accumulo/conf/masters
 scp -q /opt/accumulo/conf/slaves ubuntu@$i:/opt/accumulo/conf/slaves
 scp -q /opt/accumulo/conf/gc ubuntu@$i:/opt/accumulo/conf/gc
 scp -q /opt/accumulo/conf/monitor ubuntu@$i:/opt/accumulo/conf/monitor
 scp -q /opt/accumulo/conf/tracers ubuntu@$i:/opt/accumulo/conf/tracers

 scp /home/ubuntu/copy-parallel-duper.sh ubuntu@$i:/home/ubuntu/copy-parallel-duper.sh
 ((count++))
 echo $count "file moved"
 scp /home/ubuntu/file$count ubuntu@$i:/home/ubuntu/file
done
pssh -h /home/ubuntu/first -t 5000 . /home/ubuntu/copy-parallel-duper.sh

13.6.9 copy-parallel-duper.sh
#!/bin/bash
for i in `cat /home/ubuntu/file`; do
echo "copying to " $i
#moving hadoop
 scp -q /opt/hadoop/conf/core-site.xml ubuntu@$i:/opt/hadoop/conf/core-site.xml
 scp -q /opt/hadoop/conf/mapred-site.xml ubuntu@$i:/opt/hadoop/conf/mapred-site.xml
 scp -q /opt/hadoop/conf/hdfs-site.xml ubuntu@$i:/opt/hadoop/conf/hdfs-site.xml
 scp -q /opt/hadoop/conf/masters ubuntu@$i:/opt/hadoop/conf/masters
 scp -q /opt/hadoop/conf/slaves ubuntu@$i:/opt/hadoop/conf/slaves
#moving accumulo
 scp -q /opt/accumulo/conf/accumulo-site.xml ubuntu@$i:/opt/accumulo/conf/accumulo-site.xml
 scp -q /opt/accumulo/conf/masters ubuntu@$i:/opt/accumulo/conf/masters
 scp -q /opt/accumulo/conf/slaves ubuntu@$i:/opt/accumulo/conf/slaves
 scp -q /opt/accumulo/conf/gc ubuntu@$i:/opt/accumulo/conf/gc
 scp -q /opt/accumulo/conf/monitor ubuntu@$i:/opt/accumulo/conf/monitor
 scp -q /opt/accumulo/conf/tracers ubuntu@$i:/opt/accumulo/conf/tracers
done

13.7 Amazon EC2 Scripts
13.7.1 get-running-instances-default.sh
./ec2-describe-instances --region us-west-1| grep running

13.7.2 proc-instances-domain.sh
awk '/INSTANCE/ { split($5,parts,"-"); split(parts[5],subb,"."); split($5,parts2,".");
 print $4
 # print parts[2]"."parts[3]"."parts[4]"."subb[1]"\t"$5"\t"parts2[1]
}' instances

13.7.3 proc-instances-IP.sh
awk '/INSTANCE/ { split($5,parts,"-"); split(parts[5],subb,"."); split($5,parts2,".");
 print $15
 # print parts[2]"."parts[3]"."parts[4]"."subb[1]"\t"$5"\t"parts2[1]
}' instances

13.7.4 start-inst-proc.sh
!/bin/bash

Benchmarking Apache Accumulo

 60

_list=`awk '/INSTANCE/ { print $2 }' instances`
ec2start --region us-west-2 $_list
#ec2start $_list

13.7.5 stop-inst-proc.sh
#!/bin/bash
_list=`awk '/INSTANCE/ { print $2 }' instances`

